Skip to content

justld/DMNet_paddle

Repository files navigation

DMNet_paddle

1 简介

images
本项目基于paddlepaddle框架复现了DMNet语义分割模型,DMNet提出动态滤波器,核心在于DCM模块,该模块利用池化和卷积生成动态卷积核,与特征图进行卷积。

论文:

项目参考:

2 复现精度

在CityScapes val数据集的测试效果如下表。

NetWork steps opt image_size batch_size dataset memory card mIou config weight log
DMNet 80K SGD 1024x512 8 CityScapes 32G 4 79.88 dmnet_cityscapes_1024x512_80k.yml weight log

3 数据集

CityScapes dataset

  • 数据集大小:
    • 训练集: 2975
    • 验证集: 500

4 环境依赖

  • 硬件: Tesla V100 * 4

  • 框架:

    • PaddlePaddle == 2.2.0

快速开始

第一步:克隆本项目

# clone this repo
git clone https://github.com/justld/DMNet_paddle.git
cd DMNet_paddle

安装第三方库

pip install -r requirements.txt

第二步:训练模型

单卡训练:

python train.py --config configs/dmnet_cityscapes_1024x512_80k.yml  --do_eval --use_vdl --log_iter 100 --save_interval 1000 --save_dir output

多卡训练:

python -m paddle.distributed.launch train.py --config configs/dmnet_cityscapes_1024x512_80k.yml  --do_eval --use_vdl --log_iter 100 --save_interval 1000 --save_dir output

第三步:测试

output目录下包含已经训练好的模型参数以及对应的日志文件。

python val.py --config configs/dmnet_cityscapes_1024x512_80k.yml --model_path 

第四步:test_tipc

output目录下包含已经训练好的模型参数以及对应的日志文件。

bash test_tipc/prepare.sh ./test_tipc/configs/dmnet_small/train_infer_python.txt 'lite_train_lite_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/dmnet_small/train_infer_python.txt 'lite_train_lite_infer'

5 代码结构与说明

代码结构

├─configs                          
├─images                         
├─output                           
├─paddleseg                                                   
│  export.py                     
│  predict.py                        
│  README.md                        
│  README_CN.md                     
│  requirements.txt                      
│  setup.py                   
│  train.py                
│  val.py                       

说明

1、本项目在Aistudio平台,使用Tesla V100 * 4 脚本任务训练100K 79.88%。
2、本项目基于PaddleSeg开发。

6 注意

DMNet转为静态图模式,需要固定输入尺寸,具体参考这里

7 模型信息

相关信息:

信息 描述
作者 郎督
日期 2021年11月
框架版本 PaddlePaddle==2.2.0
应用场景 语义分割
硬件支持 GPU、CPU
在线体验 notebook, Script

About

reproduction of DMNet

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published