Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update opimizations to Gradio #48

Merged
merged 1 commit into from
Oct 12, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
309 changes: 214 additions & 95 deletions app.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,68 +7,129 @@
from pyramid_dit import PyramidDiTForVideoGeneration
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
import threading

# Global model cache
model_cache = {}

# Lock to ensure thread-safe access to the model cache
model_cache_lock = threading.Lock()

# Configuration
model_repo = "rain1011/pyramid-flow-sd3" # Replace with the actual model repository on Hugging Face
model_dtype = 'bf16'
variant = 'diffusion_transformer_768p' # For high resolution version
width = 1280
height = 768

# variant = 'diffusion_transformer_384p' # For low resolution version
# width = 640
# height = 384
variants = {
'high': 'diffusion_transformer_768p', # For high-resolution version
'low': 'diffusion_transformer_384p' # For low-resolution version
}
required_file = 'config.json' # Ensure config.json is present
width_high = 1280
height_high = 768
width_low = 640
height_low = 384

# Get the current working directory and create a folder to store the model
current_directory = os.getcwd()
model_path = os.path.join(current_directory, "pyramid_flow_model") # Directory to store the model

# Download the model if not already present
def download_model_from_hf(model_repo, model_dir):
def download_model_from_hf(model_repo, model_dir, variants, required_file):
need_download = False
if not os.path.exists(model_dir):
print(f"Downloading model from {model_repo} to {model_dir}...")
snapshot_download(
repo_id=model_repo,
local_dir=model_dir,
local_dir_use_symlinks=False,
repo_type='model'
)
print("Model download complete.")
print(f"[INFO] Model directory '{model_dir}' does not exist. Initiating download...")
need_download = True
else:
print(f"Model directory '{model_dir}' already exists. Skipping download.")

# Check if all required files exist for each variant
for variant_key, variant_dir in variants.items():
variant_path = os.path.join(model_dir, variant_dir)
file_path = os.path.join(variant_path, required_file)
if not os.path.exists(file_path):
print(f"[WARNING] Required file '{required_file}' missing in '{variant_path}'.")
need_download = True
break

if need_download:
print(f"[INFO] Downloading model from '{model_repo}' to '{model_dir}'...")
try:
snapshot_download(
repo_id=model_repo,
local_dir=model_dir,
local_dir_use_symlinks=False,
repo_type='model'
)
print("[INFO] Model download complete.")
except Exception as e:
print(f"[ERROR] Failed to download the model: {e}")
raise
else:
print(f"[INFO] All required model files are present in '{model_dir}'. Skipping download.")

# Download model from Hugging Face if not present
download_model_from_hf(model_repo, model_path)

# Initialize model and move to CUDA
torch.cuda.set_device(0)
model = PyramidDiTForVideoGeneration(
model_path,
model_dtype,
model_variant=variant,
)
model.vae.to("cuda")
model.dit.to("cuda")
model.text_encoder.to("cuda")
model.vae.enable_tiling()

# Set torch_dtype based on model_dtype
if model_dtype == "bf16":
torch_dtype = torch.bfloat16
elif model_dtype == "fp16":
torch_dtype = torch.float16
else:
torch_dtype = torch.float32


def resize_crop_image(img: PIL.Image, tgt_width, tgt_height):
download_model_from_hf(model_repo, model_path, variants, required_file)

# Function to initialize the model based on user options
def initialize_model(variant):
print(f"[INFO] Initializing model with variant='{variant}', using bf16 precision...")

# Determine the correct variant directory
variant_dir = variants['high'] if variant == '768p' else variants['low']
base_path = model_path # Pass the base model path

print(f"[DEBUG] Model base path: {base_path}")

# Verify that config.json exists in the variant directory
config_path = os.path.join(model_path, variant_dir, 'config.json')
if not os.path.exists(config_path):
print(f"[ERROR] config.json not found in '{os.path.join(model_path, variant_dir)}'.")
raise FileNotFoundError(f"config.json not found in '{os.path.join(model_path, variant_dir)}'.")

model_dtype = "bf16"
torch_dtype_selected = torch.bfloat16

# Initialize the model
try:
model = PyramidDiTForVideoGeneration(
base_path, # Pass the base model path
model_dtype=model_dtype, # Use bf16
model_variant=variant_dir, # Pass the variant directory name
cpu_offloading=True, # Enable CPU offloading
)

# Always enable tiling for the VAE
model.vae.enable_tiling()

# Remove manual device placement when using CPU offloading
# The components will be moved to the appropriate devices automatically
if torch.cuda.is_available():
torch.cuda.set_device(0)
else:
print("[WARNING] CUDA is not available. Proceeding without GPU.")

print("[INFO] Model initialized successfully.")
return model, torch_dtype_selected
except Exception as e:
print(f"[ERROR] Error initializing model: {e}")
raise

# Function to get the model from cache or initialize it
def initialize_model_cached(variant):
key = variant

# Check if the model is already in the cache
if key not in model_cache:
with model_cache_lock:
# Double-checked locking to prevent race conditions
if key not in model_cache:
model, dtype = initialize_model(variant)
model_cache[key] = (model, dtype)

return model_cache[key]

def resize_crop_image(img: PIL.Image.Image, tgt_width, tgt_height):
ori_width, ori_height = img.width, img.height
scale = max(tgt_width / ori_width, tgt_height / ori_height)
resized_width = round(ori_width * scale)
resized_height = round(ori_height * scale)
img = img.resize((resized_width, resized_height))
img = img.resize((resized_width, resized_height), resample=PIL.Image.LANCZOS)

left = (resized_width - tgt_width) / 2
top = (resized_height - tgt_height) / 2
Expand All @@ -80,52 +141,98 @@ def resize_crop_image(img: PIL.Image, tgt_width, tgt_height):

return img


# Function to generate text-to-video
def generate_text_to_video(prompt, temp, guidance_scale, video_guidance_scale):

with torch.no_grad(), torch.cuda.amp.autocast(enabled=True if model_dtype != 'fp32' else False, dtype=torch_dtype):
frames = model.generate(
prompt=prompt,
num_inference_steps=[20, 20, 20],
video_num_inference_steps=[10, 10, 10],
height=height,
width=width,
temp=temp,
guidance_scale=guidance_scale,
video_guidance_scale=video_guidance_scale,
output_type="pil",
save_memory=True, # If you have enough GPU memory, set it to `False` to improve vae decoding speed
cpu_offloading=False, # If you do not have enough GPU memory, set it to `True` to reduce memory usage (will increase inference time)
)
def generate_text_to_video(prompt, temp, guidance_scale, video_guidance_scale, resolution):
print("[DEBUG] generate_text_to_video called.")
variant = '768p' if resolution == "768p" else '384p'
height = height_high if resolution == "768p" else height_low
width = width_high if resolution == "768p" else width_low

# Initialize model based on user options using cached function
try:
model, torch_dtype_selected = initialize_model_cached(variant)
except Exception as e:
print(f"[ERROR] Model initialization failed: {e}")
return f"Model initialization failed: {e}"

try:
print("[INFO] Starting text-to-video generation...")
with torch.no_grad(), torch.autocast('cuda', dtype=torch_dtype_selected):
frames = model.generate(
prompt=prompt,
num_inference_steps=[20, 20, 20],
video_num_inference_steps=[10, 10, 10],
height=height,
width=width,
temp=temp,
guidance_scale=guidance_scale,
video_guidance_scale=video_guidance_scale,
output_type="pil",
cpu_offloading=True,
save_memory=True,
)
print("[INFO] Text-to-video generation completed.")
except Exception as e:
print(f"[ERROR] Error during text-to-video generation: {e}")
return f"Error during video generation: {e}"

video_path = f"{str(uuid.uuid4())}_text_to_video_sample.mp4"
export_to_video(frames, video_path, fps=24)
try:
export_to_video(frames, video_path, fps=24)
print(f"[INFO] Video exported to {video_path}.")
except Exception as e:
print(f"[ERROR] Error exporting video: {e}")
return f"Error exporting video: {e}"
return video_path


# Function to generate image-to-video
def generate_image_to_video(image, prompt, temp, video_guidance_scale):

image = resize_crop_image(image, width, height)

with torch.no_grad(), torch.cuda.amp.autocast(enabled=True if model_dtype != 'fp32' else False, dtype=torch_dtype):
frames = model.generate_i2v(
prompt=prompt,
input_image=image,
num_inference_steps=[10, 10, 10],
temp=temp,
video_guidance_scale=video_guidance_scale,
output_type="pil",
save_memory=True, # If you have enough GPU memory, set it to `False` to improve vae decoding speed
cpu_offloading=False, # If you do not have enough GPU memory, set it to `True` to reduce memory usage (will increase inference time)
)
def generate_image_to_video(image, prompt, temp, video_guidance_scale, resolution):
print("[DEBUG] generate_image_to_video called.")
variant = '768p' if resolution == "768p" else '384p'
height = height_high if resolution == "768p" else height_low
width = width_high if resolution == "768p" else width_low

try:
image = resize_crop_image(image, width, height)
print("[INFO] Image resized and cropped successfully.")
except Exception as e:
print(f"[ERROR] Error processing image: {e}")
return f"Error processing image: {e}"

# Initialize model based on user options using cached function
try:
model, torch_dtype_selected = initialize_model_cached(variant)
except Exception as e:
print(f"[ERROR] Model initialization failed: {e}")
return f"Model initialization failed: {e}"

try:
print("[INFO] Starting image-to-video generation...")
with torch.no_grad(), torch.autocast('cuda', dtype=torch_dtype_selected):
frames = model.generate_i2v(
prompt=prompt,
input_image=image,
num_inference_steps=[10, 10, 10],
temp=temp,
video_guidance_scale=video_guidance_scale,
output_type="pil",
cpu_offloading=True,
save_memory=True,
)
print("[INFO] Image-to-video generation completed.")
except Exception as e:
print(f"[ERROR] Error during image-to-video generation: {e}")
return f"Error during video generation: {e}"

video_path = f"{str(uuid.uuid4())}_image_to_video_sample.mp4"
export_to_video(frames, video_path, fps=24)
try:
export_to_video(frames, video_path, fps=24)
print(f"[INFO] Video exported to {video_path}.")
except Exception as e:
print(f"[ERROR] Error exporting video: {e}")
return f"Error exporting video: {e}"
return video_path


# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
Expand All @@ -138,6 +245,14 @@ def generate_image_to_video(image, prompt, temp, video_guidance_scale):
"""
)

# Shared settings
with gr.Row():
resolution_dropdown = gr.Dropdown(
choices=["768p", "384p"],
value="768p",
label="Model Resolution"
)

with gr.Tab("Text-to-Video"):
with gr.Row():
with gr.Column():
Expand All @@ -150,11 +265,11 @@ def generate_image_to_video(image, prompt, temp, video_guidance_scale):
txt_output = gr.Video(label="Generated Video")
gr.Examples(
examples=[
["A movie trailer featuring the adventures of the 30 year old space man wearing a red wool knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, vivid colors", 16, 9, 5],
["Beautiful, snowy Tokyo city is bustling. The camera moves through the bustling city street, following several people enjoying the beautiful snowy weather and shopping at nearby stalls. Gorgeous sakura petals are flying through the wind along with snowflakes", 16, 9, 5],
["Extreme close-up of chicken and green pepper kebabs grilling on a barbeque with flames. Shallow focus and light smoke. vivid colours", 31, 9, 5],
["A movie trailer featuring the adventures of the 30 year old space man wearing a red wool knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, vivid colors", 16, 9.0, 5.0, "768p"],
["Beautiful, snowy Tokyo city is bustling. The camera moves through the bustling city street, following several people enjoying the beautiful snowy weather and shopping at nearby stalls. Gorgeous sakura petals are flying through the wind along with snowflakes", 16, 9.0, 5.0, "768p"],
["Extreme close-up of chicken and green pepper kebabs grilling on a barbeque with flames. Shallow focus and light smoke. vivid colours", 31, 9.0, 5.0, "768p"],
],
inputs=[text_prompt, temp_slider, guidance_scale_slider, video_guidance_scale_slider],
inputs=[text_prompt, temp_slider, guidance_scale_slider, video_guidance_scale_slider, resolution_dropdown],
outputs=[txt_output],
fn=generate_text_to_video,
cache_examples='lazy',
Expand All @@ -163,7 +278,7 @@ def generate_image_to_video(image, prompt, temp, video_guidance_scale):
with gr.Tab("Image-to-Video"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Input Image") # Removed `source="upload"`
image_input = gr.Image(type="pil", label="Input Image")
image_prompt = gr.Textbox(label="Prompt (Less than 128 words)", placeholder="Enter a text prompt for the video", lines=2)
image_temp_slider = gr.Slider(2, 16, value=16, step=1, label="Duration")
image_video_guidance_scale_slider = gr.Slider(1.0, 7.0, value=4.0, step=0.1, label="Video Guidance Scale")
Expand All @@ -172,22 +287,26 @@ def generate_image_to_video(image, prompt, temp, video_guidance_scale):
img_output = gr.Video(label="Generated Video")
gr.Examples(
examples=[
['assets/the_great_wall.jpg', 'FPV flying over the Great Wall', 16, 4]
['assets/the_great_wall.jpg', 'FPV flying over the Great Wall', 16, 4.0, "768p"]
],
inputs=[image_input, image_prompt, image_temp_slider, image_video_guidance_scale_slider],
inputs=[image_input, image_prompt, image_temp_slider, image_video_guidance_scale_slider, resolution_dropdown],
outputs=[img_output],
fn=generate_image_to_video,
cache_examples='lazy',
)

txt_generate.click(generate_text_to_video,
inputs=[text_prompt, temp_slider, guidance_scale_slider, video_guidance_scale_slider],
outputs=txt_output)

img_generate.click(generate_image_to_video,
inputs=[image_input, image_prompt, image_temp_slider, image_video_guidance_scale_slider],
outputs=img_output)
# Update generate functions to include resolution options
txt_generate.click(
generate_text_to_video,
inputs=[text_prompt, temp_slider, guidance_scale_slider, video_guidance_scale_slider, resolution_dropdown],
outputs=txt_output
)

img_generate.click(
generate_image_to_video,
inputs=[image_input, image_prompt, image_temp_slider, image_video_guidance_scale_slider, resolution_dropdown],
outputs=img_output
)

# Launch Gradio app
demo.launch(share=True)
demo.launch(share=True)