This repository contains the code and data for the paper Active Retrieval Augmented Generation.
FLARE is a generic retrieval-augmented generation method that actively decides when and what to retrieve using a prediction of the upcoming sentence to anticipate future content and utilize it as the query to retrieve relevant documents if it contains low-confidence tokens.
Create a conda env and follow setup.sh
to install dependencies.
Download the Wikipedia dump from the DPR repository using the following command:
mkdir data/dpr
wget -O data/dpr/psgs_w100.tsv.gz https://dl.fbaipublicfiles.com/dpr/wikipedia_split/psgs_w100.tsv.gz
pushd data/dpr
gzip -d psgs_w100.tsv.gz
popd
We use Elasticsearch to index the Wikipedia dump.
wget -O elasticsearch-7.17.9.tar.gz https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.17.9-linux-x86_64.tar.gz # download Elasticsearch
tar zxvf elasticsearch-7.17.9.tar.gz
pushd elasticsearch-7.17.9
nohup bin/elasticsearch & # run Elasticsearch in background
popd
python prep.py --task build_elasticsearch --inp data/dpr/psgs_w100.tsv wikipedia_dpr # build index
This is only required for experiments on the WikiASP dataset.
- Create a bing search API key following instructions on https://www.microsoft.com/en-us/bing/apis/bing-web-search-api.
- Run a local bing search server with caching functionality to save credits:
export BING_SEARCH_KEY=$YOUR_KEY; python bing_search_cache_server.py &> bing_log.out &
.
Put OpenAI keys in the keys.sh
file.
Multiple keys can be used to accelerate experiments.
Please avoid uploading your keys to Github by accident!
Use the following command to run FLARE with text-davinci-003
.
./openai.sh 2wikihop configs/2wikihop_flare_config.json # 2WikiMultihopQA dataset
./openai.sh wikiasp configs/wikiasp_flare_config.json # WikiAsp dataset
Be careful, experiments are relatively expensive because FLARE calls OpenAI API multiple times for a single example. You can decrease max_num_examples
to run small-scale experiments to save credits.
Set debug=true
to active the debugging mode which walks you through the iterative retrieval and generation process one example at a time.
@article{jiang2023flare,
title={Active Retrieval Augmented Generation},
author={Zhengbao Jiang and Frank F. Xu and Luyu Gao and Zhiqing Sun and Qian Liu and Jane Dwivedi-Yu and Yiming Yang and Jamie Callan and Graham Neubig},
year={2023},
eprint={2305.06983},
archivePrefix={arXiv},
primaryClass={cs.CL}
}