-
Notifications
You must be signed in to change notification settings - Fork 295
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This is the initial commits for neural biasing implementation with ea…
…rly context injection and text perturbation; the codes runs well on the grid; however, it needs pretty much cleaning up and refactoring before maki a reasonable PR
- Loading branch information
1 parent
5c04c31
commit 78b7ef3
Showing
49 changed files
with
24,302 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
206 changes: 206 additions & 0 deletions
206
egs/librispeech/ASR/pruned_transducer_stateless7_contextual/alignment.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang, | ||
# Zengwei Yao) | ||
# | ||
# See ../../../../LICENSE for clarification regarding multiple authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
from typing import List | ||
|
||
import k2 | ||
import torch | ||
|
||
from beam_search import Hypothesis, HypothesisList, get_hyps_shape | ||
|
||
# The force alignment problem can be formulated as finding | ||
# a path in a rectangular lattice, where the path starts | ||
# from the lower left corner and ends at the upper right | ||
# corner. The horizontal axis of the lattice is `t` (representing | ||
# acoustic frame indexes) and the vertical axis is `u` (representing | ||
# BPE tokens of the transcript). | ||
# | ||
# The notations `t` and `u` are from the paper | ||
# https://arxiv.org/pdf/1211.3711.pdf | ||
# | ||
# Beam search is used to find the path with the highest log probabilities. | ||
# | ||
# It assumes the maximum number of symbols that can be | ||
# emitted per frame is 1. | ||
|
||
|
||
def batch_force_alignment( | ||
model: torch.nn.Module, | ||
encoder_out: torch.Tensor, | ||
encoder_out_lens: torch.Tensor, | ||
ys_list: List[List[int]], | ||
beam_size: int = 4, | ||
) -> List[int]: | ||
"""Compute the force alignment of a batch of utterances given their transcripts | ||
in BPE tokens and the corresponding acoustic output from the encoder. | ||
Caution: | ||
This function is modified from `modified_beam_search` in beam_search.py. | ||
We assume that the maximum number of sybmols per frame is 1. | ||
Args: | ||
model: | ||
The transducer model. | ||
encoder_out: | ||
A tensor of shape (N, T, C). | ||
encoder_out_lens: | ||
A 1-D tensor of shape (N,), containing number of valid frames in | ||
encoder_out before padding. | ||
ys_list: | ||
A list of BPE token IDs list. We require that for each utterance i, | ||
len(ys_list[i]) <= encoder_out_lens[i]. | ||
beam_size: | ||
Size of the beam used in beam search. | ||
Returns: | ||
Return a list of frame indexes list for each utterance i, | ||
where len(ans[i]) == len(ys_list[i]). | ||
""" | ||
assert encoder_out.ndim == 3, encoder_out.ndim | ||
assert encoder_out.size(0) == len(ys_list), (encoder_out.size(0), len(ys_list)) | ||
assert encoder_out.size(0) > 0, encoder_out.size(0) | ||
|
||
blank_id = model.decoder.blank_id | ||
context_size = model.decoder.context_size | ||
device = next(model.parameters()).device | ||
|
||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( | ||
input=encoder_out, | ||
lengths=encoder_out_lens.cpu(), | ||
batch_first=True, | ||
enforce_sorted=False, | ||
) | ||
batch_size_list = packed_encoder_out.batch_sizes.tolist() | ||
N = encoder_out.size(0) | ||
assert torch.all(encoder_out_lens > 0), encoder_out_lens | ||
assert N == batch_size_list[0], (N, batch_size_list) | ||
|
||
sorted_indices = packed_encoder_out.sorted_indices.tolist() | ||
encoder_out_lens = encoder_out_lens.tolist() | ||
ys_lens = [len(ys) for ys in ys_list] | ||
sorted_encoder_out_lens = [encoder_out_lens[i] for i in sorted_indices] | ||
sorted_ys_lens = [ys_lens[i] for i in sorted_indices] | ||
sorted_ys_list = [ys_list[i] for i in sorted_indices] | ||
|
||
B = [HypothesisList() for _ in range(N)] | ||
for i in range(N): | ||
B[i].add( | ||
Hypothesis( | ||
ys=[blank_id] * context_size, | ||
log_prob=torch.zeros(1, dtype=torch.float32, device=device), | ||
timestamp=[], | ||
) | ||
) | ||
|
||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data) | ||
|
||
offset = 0 | ||
finalized_B = [] | ||
for t, batch_size in enumerate(batch_size_list): | ||
start = offset | ||
end = offset + batch_size | ||
current_encoder_out = encoder_out.data[start:end] | ||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1) | ||
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim) | ||
offset = end | ||
|
||
finalized_B = B[batch_size:] + finalized_B | ||
B = B[:batch_size] | ||
sorted_encoder_out_lens = sorted_encoder_out_lens[:batch_size] | ||
sorted_ys_lens = sorted_ys_lens[:batch_size] | ||
|
||
hyps_shape = get_hyps_shape(B).to(device) | ||
|
||
A = [list(b) for b in B] | ||
B = [HypothesisList() for _ in range(batch_size)] | ||
|
||
ys_log_probs = torch.cat( | ||
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps] | ||
) # (num_hyps, 1) | ||
|
||
decoder_input = torch.tensor( | ||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps], | ||
device=device, | ||
dtype=torch.int64, | ||
) # (num_hyps, context_size) | ||
|
||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) | ||
decoder_out = model.joiner.decoder_proj(decoder_out) | ||
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim) | ||
|
||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor | ||
# as index, so we use `to(torch.int64)` below. | ||
current_encoder_out = torch.index_select( | ||
current_encoder_out, | ||
dim=0, | ||
index=hyps_shape.row_ids(1).to(torch.int64), | ||
) # (num_hyps, 1, 1, encoder_out_dim) | ||
|
||
logits = model.joiner( | ||
current_encoder_out, decoder_out, project_input=False | ||
) # (num_hyps, 1, 1, vocab_size) | ||
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size) | ||
|
||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) | ||
log_probs.add_(ys_log_probs) | ||
|
||
vocab_size = log_probs.size(-1) | ||
|
||
row_splits = hyps_shape.row_splits(1) * vocab_size | ||
log_probs_shape = k2.ragged.create_ragged_shape2( | ||
row_splits=row_splits, cached_tot_size=log_probs.numel() | ||
) | ||
ragged_log_probs = k2.RaggedTensor( | ||
shape=log_probs_shape, value=log_probs.reshape(-1) | ||
) # [batch][num_hyps*vocab_size] | ||
|
||
for i in range(batch_size): | ||
for h, hyp in enumerate(A[i]): | ||
pos_u = len(hyp.timestamp) | ||
idx_offset = h * vocab_size | ||
if (sorted_encoder_out_lens[i] - 1 - t) >= (sorted_ys_lens[i] - pos_u): | ||
# emit blank token | ||
new_hyp = Hypothesis( | ||
log_prob=ragged_log_probs[i][idx_offset + blank_id], | ||
ys=hyp.ys[:], | ||
timestamp=hyp.timestamp[:], | ||
) | ||
B[i].add(new_hyp) | ||
if pos_u < sorted_ys_lens[i]: | ||
# emit non-blank token | ||
new_token = sorted_ys_list[i][pos_u] | ||
new_hyp = Hypothesis( | ||
log_prob=ragged_log_probs[i][idx_offset + new_token], | ||
ys=hyp.ys + [new_token], | ||
timestamp=hyp.timestamp + [t], | ||
) | ||
B[i].add(new_hyp) | ||
|
||
if len(B[i]) > beam_size: | ||
B[i] = B[i].topk(beam_size, length_norm=True) | ||
|
||
B = B + finalized_B | ||
sorted_hyps = [b.get_most_probable() for b in B] | ||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist() | ||
hyps = [sorted_hyps[i] for i in unsorted_indices] | ||
ans = [] | ||
for i, hyp in enumerate(hyps): | ||
assert hyp.ys[context_size:] == ys_list[i], (hyp.ys[context_size:], ys_list[i]) | ||
ans.append(hyp.timestamp) | ||
|
||
return ans |
Oops, something went wrong.