Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Recipe for Multi-lingual LibriSpeech #1520

Open
wants to merge 13 commits into
base: master
Choose a base branch
from
137 changes: 137 additions & 0 deletions egs/mls/ASR/local/compute_fbank_mls.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""
This file computes fbank features of the LibriSpeech dataset.
It looks for manifests in the directory data/manifests.

The generated fbank features are saved in data/fbank.
"""

import argparse
import logging
import os
from pathlib import Path
from typing import Optional

import sentencepiece as spm
import torch
from filter_cuts import filter_cuts
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached

from icefall.utils import get_executor, str2bool

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)

def get_args():
parser = argparse.ArgumentParser()

parser.add_argument(
"--manifest-dir",
type=str,
default="data/manifests",
)

parser.add_argument(
"--fbank-dir",
type=str,
default="data/fbank_mls",
)

parser.add_argument(
"--part",
type=str,
help="Which language to prepare, if all, prepare all languages",
choices=["english", "dutch", "german", "spanish", "french", "italian", "polish", "portuguese", "all"]
)

return parser.parse_args()

def compute_fbank_mls(
manifest_dir=str,
fbank_dir=str,
part=str,
):
src_dir = Path("data/manifests")
output_dir = Path(fbank_dir)
num_jobs = min(15, os.cpu_count())
num_mel_bins = 80

if part == "all":
dataset_parts = [
"english",
"dutch",
"german",
"spanish"
]
else:
dataset_parts = [part]
splits = ["train", "test", "dev"]

num_jobs = 15
num_mel_bins = 80
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))

for language in dataset_parts:
for split in splits:
recording_file = src_dir / f"mls-{language}_recordings_{split}.jsonl.gz"
supervision_file = src_dir / f"mls-{language}_supervisions_{split}.jsonl.gz"
recordings = CutSet.from_file(recording_file)
supervisions = CutSet.from_file(supervision_file)

cut_set = CutSet.from_manifests(
recordings=recordings,
supervisions=supervisions,
)

prefix = f"mls-{language}"
with get_executor() as ex:
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{split}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)

cuts_filename = output_dir / f"mls-{language}_{split}.jsonl.gz"

logging.info(f"Saving to {cuts_filename}")
cut_set.to_file(cuts_filename)


if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
compute_fbank_mls(
manifest_dir=args.manifest_dir,
fbank_dir=args.fbank_dir,
part=args.part,
)


172 changes: 172 additions & 0 deletions egs/mls/ASR/local/compute_fbank_mls_splits.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
from datetime import datetime
from pathlib import Path

import torch
from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)

parser.add_argument(
"--num-workers",
type=int,
default=20,
help="Number of dataloading workers used for reading the audio.",
)
parser.add_argument(
"--batch-duration",
type=float,
default=600.0,
help="The maximum number of audio seconds in a batch."
"Determines batch size dynamically.",
)

parser.add_argument(
"--language",
type=str,
default="english",
)

parser.add_argument(
"--num-splits",
type=int,
required=True,
help="The number of splits of the English subset",
)

parser.add_argument(
"--start",
type=int,
default=0,
help="Process pieces starting from this number (inclusive).",
)

parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop processing pieces until this number (exclusive).",
)

parser.add_argument(
"--fbank-dir",
type=str,
default="data/fbank_mls"
)
return parser


def compute_fbank_mls_splits(args):
num_splits = args.num_splits
output_dir = f"{args.fbank_dir}/{args.language}_split"
output_dir = Path(output_dir)
assert output_dir.exists(), f"{output_dir} does not exist!"

num_digits = 8 # num_digits is fixed by lhotse split-lazy

start = args.start
stop = args.stop
if stop < start:
stop = num_splits

stop = min(stop, num_splits)

device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")

for i in range(start, stop):
idx = f"{i}".zfill(num_digits)
logging.info(f"Processing {idx}/{num_splits}")

cuts_path = output_dir / f"mls-{args.language}_train.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue

raw_cuts_path = output_dir / f"mls-{args.language}_train_raw.{idx}.jsonl.gz"

logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)

logging.info("Computing features")

cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/feats_{args.language}_{idx}",
num_workers=args.num_workers,
batch_duration=args.batch_duration,
overwrite=True,
)

logging.info("About to split cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)

logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
logging.info(f"Saved to {cuts_path}")


def main():
now = datetime.now()
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")

log_filename = "log-compute_fbank_mls_splits"
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
log_filename = f"{log_filename}-{date_time}"

logging.basicConfig(
filename=log_filename,
format=formatter,
level=logging.INFO,
filemode="w",
)

console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter(formatter))
logging.getLogger("").addHandler(console)

parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))

compute_fbank_mls_splits(args)


if __name__ == "__main__":
main()
Loading
Loading