Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Minor fixes for logging #296

Merged
merged 2 commits into from
Apr 10, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 20 additions & 16 deletions egs/librispeech/ASR/pruned_transducer_stateless/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -609,21 +609,6 @@ def maybe_log_weights(tag: str):
global_step=params.batch_idx_train,
)

def maybe_log_param_relative_changes():
if (
params.log_diagnostics
and tb_writer is not None
and params.batch_idx_train % (params.log_interval * 5) == 0
):
deltas = optim_step_and_measure_param_change(model, optimizer)
tb_writer.add_scalars(
"train/relative_param_change_per_minibatch",
deltas,
global_step=params.batch_idx_train,
)
else:
optimizer.step()

cur_batch_idx = params.get("cur_batch_idx", 0)

for batch_idx, batch in enumerate(train_dl):
Expand Down Expand Up @@ -651,7 +636,26 @@ def maybe_log_param_relative_changes():

maybe_log_weights("train/param_norms")
maybe_log_gradients("train/grad_norms")
maybe_log_param_relative_changes()

old_parameters = None
if (
params.log_diagnostics
and tb_writer is not None
and params.batch_idx_train % (params.log_interval * 5) == 0
):
old_parameters = {
n: p.detach().clone() for n, p in model.named_parameters()
}

optimizer.step()

if old_parameters is not None:
deltas = optim_step_and_measure_param_change(model, old_parameters)
tb_writer.add_scalars(
"train/relative_param_change_per_minibatch",
deltas,
global_step=params.batch_idx_train,
)

optimizer.zero_grad()

Expand Down
37 changes: 25 additions & 12 deletions icefall/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,15 +25,14 @@
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
from typing import Dict, Iterable, List, TextIO, Optional, Tuple, Union
from typing import Dict, Iterable, List, TextIO, Tuple, Union

import k2
import k2.version
import kaldialign
import torch
import torch.nn as nn
import torch.distributed as dist
from torch.cuda.amp import GradScaler
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter

Pathlike = Union[str, Path]
Expand Down Expand Up @@ -758,28 +757,42 @@ def measure_gradient_norms(

def optim_step_and_measure_param_change(
model: nn.Module,
optimizer: torch.optim.Optimizer,
scaler: Optional[GradScaler] = None,
old_parameters: Dict[str, nn.parameter.Parameter],
) -> Dict[str, float]:
"""
Perform model weight update and measure the "relative change in parameters per minibatch."
Measure the "relative change in parameters per minibatch."
It is understood as a ratio between the L2 norm of the difference between original and updates parameters,
and the L2 norm of the original parameter. It is given by the formula:

.. math::
\begin{aligned}
\delta = \frac{\Vert\theta - \theta_{new}\Vert^2}{\Vert\theta\Vert^2}
\end{aligned}
"""
param_copy = {n: p.detach().clone() for n, p in model.named_parameters()}
if scaler:
scaler.step(optimizer)
else:

This function is supposed to be used as follows:

.. code-block:: python

old_parameters = {
n: p.detach().clone() for n, p in model.named_parameters()
}

optimizer.step()

deltas = optim_step_and_measure_param_change(old_parameters)

Args:
model: A torch.nn.Module instance.
old_parameters:
A Dict of named_parameters before optimizer.step().

Return:
A Dict containing the relative change for each parameter.
"""
relative_change = {}
with torch.no_grad():
for n, p_new in model.named_parameters():
p_orig = param_copy[n]
p_orig = old_parameters[n]
delta = l2_norm(p_orig - p_new) / l2_norm(p_orig)
relative_change[n] = delta.item()
return relative_change