-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
494 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright 2024 Xiaomi Corp. (authors: Wei Kang) | ||
# | ||
# See ../../../../LICENSE for clarification regarding multiple authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import logging | ||
import numpy as np | ||
import os | ||
from datetime import datetime | ||
from multiprocessing.pool import ThreadPool | ||
from pathlib import Path | ||
from typing import Any, Dict, List, Set, Optional, Tuple, Union | ||
|
||
from lhotse import CutSet, MonoCut, SupervisionSegment, load_manifest_lazy | ||
from lhotse.serialization import SequentialJsonlWriter | ||
from textsearch import ( | ||
AttributeDict, | ||
TextSource, | ||
Transcript, | ||
levenshtein_distance, | ||
) | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--manifest-in", | ||
type=str, | ||
help="""The manifest generated by transcript stage containing book path, | ||
recordings path and recognition results. | ||
""", | ||
) | ||
parser.add_argument( | ||
"--manifest-out", | ||
type=str, | ||
help="""The file name of the new manifests to write to. | ||
""", | ||
) | ||
parser.add_argument( | ||
"--batch-size", | ||
type=int, | ||
default=50, | ||
help="""The number of cuts in a batch. | ||
""", | ||
) | ||
return parser.parse_args() | ||
|
||
|
||
def get_params() -> AttributeDict: | ||
"""Return a dict containing matching parameters. | ||
All related parameters that are not passed from the commandline | ||
are saved in the variable `params`. | ||
Commandline options are merged into `params` after they are parsed, so | ||
you can also access them via `params`. | ||
""" | ||
params = AttributeDict( | ||
{ | ||
# parameters for loading source texts | ||
# you can find the docs in textsearch/datatypes.py | ||
"use_utf8": False, | ||
"is_bpe": True, | ||
"use_uppercase": True, | ||
# parameters for adding timestamps for each subtitle | ||
"duration_add_on_left": 0.0, | ||
"duration_add_on_right": 0.0, | ||
"max_error_rate": 0.10, | ||
} | ||
) | ||
|
||
return params | ||
|
||
|
||
def write( | ||
params: AttributeDict, | ||
batch_cuts: List[MonoCut], | ||
results, | ||
cuts_writer: SequentialJsonlWriter, | ||
): | ||
""" | ||
Write the segmented results to disk as new manifests. | ||
Args: | ||
batch_cuts: | ||
The original batch cuts. | ||
results: | ||
Returned from `align`. | ||
cuts_writer: | ||
The writer used to write the new manifests out. | ||
""" | ||
cut_keep_sup: Dict[str, List[int]] = {} | ||
cut_list = [] | ||
for item in results: | ||
if item is None: | ||
continue | ||
cut_index, sup_index = item[0] | ||
start_time, end_time = item[1], item[2] | ||
|
||
current_cut = batch_cuts[cut_index] | ||
if current_cut.id not in cut_keep_sup: | ||
cut_keep_sup[current_cut.id] = [sup_index] | ||
else: | ||
cut_keep_sup[current_cut.id].append(sup_index) | ||
|
||
current_cut.supervisions[sup_index].start = start_time | ||
current_cut.supervisions[sup_index].duration = end_time - start_time | ||
current_cut.supervisions[sup_index].alignment = None | ||
|
||
for j in range(len(batch_cuts) - 1, -1, -1): | ||
if batch_cuts[j].id not in cut_keep_sup: | ||
del batch_cuts[j] | ||
continue | ||
keep_sups = set(cut_keep_sup[batch_cuts[j].id]) | ||
for i in range(len(batch_cuts[j].supervisions) - 1, -1, -1): | ||
if i not in keep_sups: | ||
del cut.supervisions[i] | ||
if len(batch_cuts[j].supervisions) == 0: | ||
del batch_cuts[j] | ||
|
||
logging.debug(f"Writing results.") | ||
for i, cut in enumerate(batch_cuts): | ||
# Flushing only on last cut to accelerate writing. | ||
cuts_writer.write(cut, flush=(i == len(batch_cuts) - 1)) | ||
logging.debug(f"Write results done.") | ||
|
||
|
||
def align( | ||
transcript: Transcript, | ||
reference: TextSource, | ||
cut_index: Tuple[int, int], | ||
max_error_rate: float, | ||
): | ||
distance, alignment = levenshtein_distance( | ||
reference.binary_text, transcript.binary_text | ||
) | ||
ref_length = reference.binary_text.size | ||
if distance / ref_length > max_error_rate: | ||
return None | ||
start, end, _ = alignment[ | ||
0 | ||
] # select the first alignment, normally it will be only one alignment | ||
|
||
# The times is in byte level. | ||
time_stride = 1 if transcript.binary_text.dtype == np.uint8 else 4 | ||
|
||
end = end + 1 if end + 1 < transcript.binary_text.size else end | ||
|
||
start_time = float(transcript.times[start * time_stride]) | ||
end_time = float(transcript.times[end * time_stride]) | ||
|
||
return (cut_index, start_time, end_time) | ||
|
||
|
||
def process_one_batch( | ||
params: AttributeDict, | ||
batch_cuts: List[MonoCut], | ||
thread_pool: ThreadPool, | ||
cuts_writer: SequentialJsonlWriter, | ||
): | ||
# Contains cut index and local supervision index | ||
transcripts_cut_index: List[Tuple[int, int]] = [] | ||
transcripts: List[Transcript] = [] | ||
texts: List[TextSource] = [] | ||
|
||
arguments: List[Tuple[Transcript, TextSource, Tuple[int, int], float]] = [] | ||
|
||
# Construct transcript and textsource | ||
for i, cut in enumerate(batch_cuts): | ||
for j, sup in enumerate(cut.supervisions): | ||
# Transcript requires the input to be the dict like this. | ||
text_list = [] | ||
begin_times_list = [] | ||
for ali in sup.alignment["symbol"]: | ||
text_list.append(ali.symbol) | ||
begin_times_list.append(ali.start) | ||
aligns = {"text": text_list, "begin_times": begin_times_list} | ||
# alignments in a supervision might be empty | ||
if aligns["text"]: | ||
transcript = Transcript.from_dict( | ||
name=sup.id, | ||
d=aligns, | ||
use_utf8=params.use_utf8, | ||
is_bpe=params.is_bpe, | ||
) | ||
|
||
text = TextSource.from_str( | ||
name=sup.id, | ||
s=sup.text, | ||
use_utf8=params.use_utf8, | ||
) | ||
arguments.append( | ||
(transcript, text, (i, j), params.max_error_rate) | ||
) | ||
logging.debug(f"Aligning with levenshtein for {len(arguments)} segments.") | ||
async_results = thread_pool.starmap_async(align, arguments) | ||
results = async_results.get() | ||
logging.debug("Aligning with levenshtein done.") | ||
|
||
write( | ||
params=params, | ||
batch_cuts=batch_cuts, | ||
results=results, | ||
cuts_writer=cuts_writer, | ||
) | ||
|
||
|
||
def main(): | ||
args = get_args() | ||
params = get_params() | ||
params.update(vars(args)) | ||
|
||
logging.info(f"params : {params}") | ||
|
||
raw_cuts = load_manifest_lazy(params.manifest_in) | ||
cuts_writer = CutSet.open_writer(params.manifest_out, overwrite=True) | ||
|
||
# thread_pool to run the levenshtein alignment. | ||
# we use thread_pool here because the levenshtein run on C++ with GIL released. | ||
thread_pool = ThreadPool() | ||
|
||
batch_cuts = [] | ||
logging.info(f"Start processing...") | ||
for i, cut in enumerate(raw_cuts): | ||
if len(batch_cuts) >= params.batch_size: | ||
process_one_batch( | ||
params, | ||
batch_cuts=batch_cuts, | ||
thread_pool=thread_pool, | ||
cuts_writer=cuts_writer, | ||
) | ||
batch_cuts = [] | ||
logging.info(f"Number of cuts have been loaded is {i}") | ||
batch_cuts.append(cut) | ||
if len(batch_cuts): | ||
process_one_batch( | ||
params, | ||
batch_cuts=batch_cuts, | ||
thread_pool=thread_pool, | ||
cuts_writer=cuts_writer, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
formatter = ( | ||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | ||
) | ||
now = datetime.now() | ||
data_time = now.strftime("%Y-%m-%d-%H-%M-%S") | ||
os.makedirs("logs", exist_ok=True) | ||
log_file_name = f"logs/matching_{data_time}" | ||
logging.basicConfig( | ||
level=logging.INFO, | ||
format=formatter, | ||
handlers=[logging.FileHandler(log_file_name), logging.StreamHandler()], | ||
) | ||
|
||
main() |
Oops, something went wrong.