Skip to content

kadarsh22/Disentanglement-based-Active-Learning

Repository files navigation

Disentanglement based Active Learning

Paper

Disentanglement based Active Learning.
Adarsh K, Silpa V S, S Sumitra IJCNN 2021

Prerequisites

  • Ubuntu
  • Python 3
  • NVIDIA GPU + CUDA CuDNN

Disentanglement based Active Learning (DAL), a new active learning technique based on self-supervision which leverages the concept of disentanglement. Instead of requesting labels from human oracle, our method automatically labels majority of the datapoints, thus drastically reducing the human labeling budget in GAN based active learning approaches

  • Clone this repo:
git clone https://github.com/kadarsh22/disentanglement_based_active_learning.git
cd disentanglement_based_active_learning

To run DAL :

python main.py --dataset  'mnist' --gan_type 'infoGAN' --output_activation 'sigmoid' --data_size 10000
python main.py --dataset  'fashion-mnist' --gan_type 'infoGAN' -output_activation 'tanh' --data_size 10000

About

Active learning using generated images with minimized labeling budget.

Resources

Stars

Watchers

Forks

Contributors 2

  •  
  •