-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vae.py
245 lines (216 loc) · 10.2 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from tqdm import tqdm
from copy import deepcopy
import torchvision
import torchvision.transforms as transforms
import wandb
import os
import time
import argparse
import datetime
from torch.autograd import Variable
import pdb
import sys
import torch.autograd as autograd
import torchvision.models as models
sys.path.append('.')
from vae import *
from set import *
from apex import amp
def reconst_images(batch_size=64, batch_num=1, dataloader=None, model=None):
cifar10_dataloader = dataloader
model.eval()
with torch.no_grad():
for batch_idx, (X, y) in enumerate(cifar10_dataloader):
if batch_idx >= batch_num:
break
else:
X, y = X.cuda(), y.cuda().view(-1, )
_, gx, _, _ = model(X)
grid_X = torchvision.utils.make_grid(X[:batch_size].data, nrow=8, padding=2, normalize=True)
wandb.log({"_Batch_{batch}_X.jpg".format(batch=batch_idx): [
wandb.Image(grid_X)]}, commit=False)
grid_Xi = torchvision.utils.make_grid(gx[:batch_size].data, nrow=8, padding=2, normalize=True)
wandb.log({"_Batch_{batch}_GX.jpg".format(batch=batch_idx): [
wandb.Image(grid_Xi)]}, commit=False)
grid_X_Xi = torchvision.utils.make_grid((X[:batch_size] - gx[:batch_size]).data, nrow=8, padding=2,
normalize=True)
wandb.log({"_Batch_{batch}_RX.jpg".format(batch=batch_idx): [
wandb.Image(grid_X_Xi)]}, commit=False)
print('reconstruction complete!')
def test(epoch, model, testloader):
# set model as testing mode
model.eval()
acc_gx_avg = AverageMeter()
acc_rx_avg = AverageMeter()
with torch.no_grad():
for batch_idx, (x, y) in enumerate(testloader):
# distribute data to device
x, y = x.cuda(), y.cuda().view(-1, )
bs = x.size(0)
norm = torch.norm(torch.abs(x.view(bs, -1)), p=2, dim=1)
_, gx, _, _ = model(x)
acc_gx = 1 - F.mse_loss(torch.div(gx, norm.unsqueeze(1).unsqueeze(2).unsqueeze(3)), \
torch.div(x, norm.unsqueeze(1).unsqueeze(2).unsqueeze(3)), \
reduction='sum') / bs
acc_rx = 1 - F.mse_loss(torch.div(x - gx, norm.unsqueeze(1).unsqueeze(2).unsqueeze(3)), \
torch.div(x, norm.unsqueeze(1).unsqueeze(2).unsqueeze(3)), \
reduction='sum') / bs
acc_gx_avg.update(acc_gx.data.item(), bs)
acc_rx_avg.update(acc_rx.data.item(), bs)
wandb.log({'acc_gx_avg': acc_gx_avg.avg, \
'acc_rx_avg': acc_rx_avg.avg}, commit=False)
# plot progress
print("\n| Validation Epoch #%d\t\tRec_gx: %.4f Rec_rx: %.4f " % (epoch, acc_gx_avg.avg, acc_rx_avg.avg))
reconst_images(batch_size=64, batch_num=2, dataloader=testloader, model=model)
torch.save(model.state_dict(),
os.path.join(args.save_dir, 'model_epoch{}.pth'.format(epoch + 1))) # save motion_encoder
print("Epoch {} model saved!".format(epoch + 1))
def main(args):
setup_logger(args.save_dir)
use_cuda = torch.cuda.is_available()
print('\n[Phase 1] : Data Preparation')
if args.dataset == 'imagenet':
size = 224
normalizer = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
model = CVAE_imagenet_withbn(128, args.dim)
p_blur = 0.5
else:
size = 32
normalizer = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
model = CVAE_cifar_withbn(128, args.dim)
p_blur = 0.0
if args.mode=='simclr':
print('\nData Augmentation: SimCLR')
s = 1
color_jitter = transforms.ColorJitter(
0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s
)
transform_train = transforms.Compose(
[
transforms.RandomResizedCrop(size=size),
transforms.RandomHorizontalFlip(), # with 0.5 probability
transforms.RandomApply([color_jitter], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
normalizer
]
)
elif args.mode=='simsiam':
print('\nData Augmentation: SimSiam')
transform_train = transforms.Compose([
transforms.RandomResizedCrop(size, scale=(0.2, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([transforms.GaussianBlur(kernel_size=size // 20 * 2 + 1, sigma=(0.1, 2.0))], p=p_blur),
transforms.ToTensor(),
normalizer
])
else:
print('\nData Augmentation: Normal')
transform_train = transforms.Compose([
transforms.RandomResizedCrop(size=size, scale=(0.2, 1.)),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomGrayscale(p=0.2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalizer
])
if args.dataset == 'cifar10':
print("| Preparing CIFAR-10 dataset...")
sys.stdout.write("| ")
trainset = torchvision.datasets.CIFAR10(root='../data', train=True, download=True, transform=transform_train)
elif args.dataset == 'cifar100':
print("| Preparing CIFAR-100 dataset...")
sys.stdout.write("| ")
trainset = torchvision.datasets.CIFAR100(root='../data', train=True, download=True, transform=transform_train)
elif args.dataset == 'imagenet':
print("| Preparing imagenet dataset...")
sys.stdout.write("| ")
root='/gpub/imagenet_raw'
train_path = os.path.join(root, 'train')
trainset = datasets.ImageFolder(root=train_path, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=4,
drop_last=True)
# Model
print('\n[Phase 2] : Model setup')
if use_cuda:
model.cuda()
cudnn.benchmark = True
optimizer = AdamW([
{'params': model.parameters()},
], lr=args.lr, betas=(0.0, 0.9))
scheduler = optim.lr_scheduler.LambdaLR(
optimizer, lambda epoch: 1 - epoch / args.epochs)
if args.amp:
model, optimizer = amp.initialize(
model, optimizer, opt_level=args.opt_level)
print('\n[Phase 3] : Training model')
print('| Training Epochs = ' + str(args.epochs))
print('| Initial Learning Rate = ' + str(args.lr))
start_epoch = 1
for epoch in range(start_epoch, start_epoch + args.epochs):
model.train()
loss_avg = AverageMeter()
loss_rec = AverageMeter()
loss_kl = AverageMeter()
print('\n=> Training Epoch #%d, LR=%.4f' % (epoch, optimizer.param_groups[0]['lr']))
for batch_idx, (x, y) in enumerate(trainloader):
x, y = x.cuda(), y.cuda().view(-1, )
x, y = Variable(x), Variable(y)
bs = x.size(0)
_, gx, mu, logvar = model(x)
optimizer.zero_grad()
l_rec = F.mse_loss(x, gx)
l_kl = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
l_kl /= bs * 3 * args.dim
loss = l_rec + args.kl * l_kl
if args.amp:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
loss_avg.update(loss.data.item(), bs)
loss_rec.update(l_rec.data.item(), bs)
loss_kl.update(l_kl.data.item(), bs)
n_iter = (epoch - 1) * len(trainloader) + batch_idx
wandb.log({'loss': loss_avg.avg, \
'loss_rec': loss_rec.avg, \
'loss_kl': loss_kl.avg, \
'lr': optimizer.param_groups[0]['lr']}, step=n_iter)
if (batch_idx + 1) % 30 == 0:
sys.stdout.write('\r')
sys.stdout.write(
'| Epoch [%3d/%3d] Iter[%3d/%3d]\t\t Loss_rec: %.4f Loss_kl: %.4f'
% (epoch, args.epochs, batch_idx + 1,
len(trainloader), loss_rec.avg, loss_kl.avg))
scheduler.step()
test(epoch, model, trainloader)
wandb.finish()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='VAE Training')
parser.add_argument('--lr', default=5e-4, type=float, help='learning_rate')
parser.add_argument('--save_dir', default='./results/vae_cifar10_simclr', type=str, help='save_dir')
parser.add_argument('--seed', default=666, type=int, help='seed')
parser.add_argument('--dataset', default='cifar10', type=str, help='dataset = [cifar10/cifar100/imagenet]')
parser.add_argument('--epochs', default=300, type=int, help='training_epochs')
parser.add_argument('--batch_size', default=128, type=int, help='batch_size')
parser.add_argument('--dim', default=128, type=int, help='CNN_embed_dim')
parser.add_argument('--kl', default=0.1, type=float, help='kl weight')
parser.add_argument('--mode', default='normal', type=str, help='augmentation mode')
parser.add_argument("--amp", action="store_true",
help="use 16-bit (mixed) precision through NVIDIA apex AMP")
parser.add_argument("--opt_level", type=str, default="O1",
help="apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
args = parser.parse_args()
wandb.init(config=args, name=args.save_dir.replace("./results/", ''))
set_random_seed(args.seed)
main(args)