Official implementation:
- Identity-Disentangled Adversarial Augmentation for Self-Supervised Learning, ICML 2022. (Paper)
For questions, you can contact (kwyang@mail.ustc.edu.cn).
python train_vae.py --dim 512 --kl 0.1 --save_dir ./results/vae_cifar10_dim512_kl0.1_simclr --mode simclr --dataset cifar10
cd SimCLR
SimCLR training and evaluation:
python main.py --seed 1 --gpu 0 --dataset cifar10 --resnet resnet18;
python eval_lr.py --seed 1 --gpu 0 --dataset cifar10 --resnet resnet18
SimCLR+IDAA training and evaluation:
python main.py --adv --eps 0.1 --seed 1 --gpu 0 --dataset cifar10 --dim 512 --vae_path ../results/vae_cifar10_dim512_kl0.1_simclr/model_epoch292.pth --resnet resnet18;
python eval_lr.py --adv --eps 0.1 --seed 1 --gpu 0 --dataset cifar10 --dim 512 --resnet resnet18
We borrow some code from https://github.com/chihhuiho/CLAE.
If you find this repo useful for your research, please consider citing the paper
@inproceedings{yang2022identity,
title={Identity-Disentangled Adversarial Augmentation for Self-supervised Learning},
author={Yang, Kaiwen and Zhou, Tianyi and Tian, Xinmei and Tao, Dacheng},
booktitle={International Conference on Machine Learning},
pages={25364--25381},
year={2022},
organization={PMLR}
}