-
Notifications
You must be signed in to change notification settings - Fork 5.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[scripts] nnet3 : fix issue where LDA estimation failed for LSTMs wit…
…h label delay (#1540) xconfig : Added delay option for FixedAffineLayer. This will be used for ensuring the model specified in ref.config has at least the context required by the model specified in init.config
- Loading branch information
1 parent
b1e6ec8
commit 6599c9b
Showing
3 changed files
with
361 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,304 @@ | ||
#!/bin/bash | ||
|
||
# Copyright 2015 Johns Hopkins University (Author: Daniel Povey). | ||
# 2015 Vijayaditya Peddinti | ||
# 2015 Xingyu Na | ||
# 2015 Pegah Ghahrmani | ||
# 2017 Google Inc. (vpeddinti@google.com) | ||
# Apache 2.0. | ||
|
||
|
||
|
||
# run_lstm_6k.sh is like run_lstm_6j.sh but making | ||
# various kaldi-5.1-related upgrades to the script. | ||
# For the list of changes compare tuning/run_tdnn_lstm_1{c,d}.sh | ||
|
||
set -e | ||
|
||
# configs for 'chain' | ||
stage=12 | ||
train_stage=-10 | ||
get_egs_stage=-10 | ||
speed_perturb=true | ||
dir=exp/chain/lstm_6k # Note: _sp will get added to this if $speed_perturb == true. | ||
decode_iter= | ||
decode_nj=50 | ||
|
||
# training options | ||
xent_regularize=0.01 | ||
self_repair_scale=0.00001 | ||
label_delay=5 | ||
|
||
chunk_left_context=40 | ||
chunk_right_context=0 | ||
# we'll put chunk-left-context-initial=0 and chunk-right-context-final=0 | ||
# directly without variables. | ||
frames_per_chunk=140,100,160 | ||
|
||
# (non-looped) decoding options | ||
frames_per_chunk_primary=$(echo $frames_per_chunk | cut -d, -f1) | ||
extra_left_context=50 | ||
extra_right_context=0 | ||
# we'll put extra-left-context-initial=0 and extra-right-context-final=0 | ||
# directly without variables. | ||
|
||
|
||
remove_egs=false | ||
common_egs_dir= | ||
|
||
test_online_decoding=false # if true, it will run the last decoding stage. | ||
|
||
# End configuration section. | ||
echo "$0 $@" # Print the command line for logging | ||
|
||
. ./cmd.sh | ||
. ./path.sh | ||
. ./utils/parse_options.sh | ||
|
||
if ! cuda-compiled; then | ||
cat <<EOF && exit 1 | ||
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA | ||
If you want to use GPUs (and have them), go to src/, and configure and make on a machine | ||
where "nvcc" is installed. | ||
EOF | ||
fi | ||
|
||
# The iVector-extraction and feature-dumping parts are the same as the standard | ||
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already | ||
# run those things. | ||
|
||
suffix= | ||
if [ "$speed_perturb" == "true" ]; then | ||
suffix=_sp | ||
fi | ||
|
||
dir=${dir}$suffix | ||
train_set=train_nodup$suffix | ||
ali_dir=exp/tri4_ali_nodup$suffix | ||
treedir=exp/chain/tri5_7d_tree$suffix | ||
lang=data/lang_chain_2y | ||
|
||
|
||
# if we are using the speed-perturbed data we need to generate | ||
# alignments for it. | ||
local/nnet3/run_ivector_common.sh --stage $stage \ | ||
--speed-perturb $speed_perturb \ | ||
--generate-alignments $speed_perturb || exit 1; | ||
|
||
|
||
if [ $stage -le 9 ]; then | ||
# Get the alignments as lattices (gives the CTC training more freedom). | ||
# use the same num-jobs as the alignments | ||
nj=$(cat exp/tri4_ali_nodup$suffix/num_jobs) || exit 1; | ||
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \ | ||
data/lang exp/tri4 exp/tri4_lats_nodup$suffix | ||
rm exp/tri4_lats_nodup$suffix/fsts.*.gz # save space | ||
fi | ||
|
||
|
||
if [ $stage -le 10 ]; then | ||
# Create a version of the lang/ directory that has one state per phone in the | ||
# topo file. [note, it really has two states.. the first one is only repeated | ||
# once, the second one has zero or more repeats.] | ||
rm -rf $lang | ||
cp -r data/lang $lang | ||
silphonelist=$(cat $lang/phones/silence.csl) || exit 1; | ||
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; | ||
# Use our special topology... note that later on may have to tune this | ||
# topology. | ||
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo | ||
fi | ||
|
||
if [ $stage -le 11 ]; then | ||
# Build a tree using our new topology. | ||
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ | ||
--context-opts "--context-width=2 --central-position=1" \ | ||
--cmd "$train_cmd" 7000 data/$train_set $lang $ali_dir $treedir | ||
fi | ||
|
||
if [ $stage -le 12 ]; then | ||
echo "$0: creating neural net configs using the xconfig parser"; | ||
|
||
num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}') | ||
[ -z $num_targets ] && { echo "$0: error getting num-targets"; exit 1; } | ||
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python) | ||
|
||
lstm_opts="decay-time=20" | ||
|
||
mkdir -p $dir/configs | ||
cat <<EOF > $dir/configs/network.xconfig | ||
input dim=100 name=ivector | ||
input dim=40 name=input | ||
# please note that it is important to have input layer with the name=input | ||
# as the layer immediately preceding the fixed-affine-layer to enable | ||
# the use of short notation for the descriptor | ||
# Note : The delay variable will be used just in the init.config. | ||
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat delay=$label_delay | ||
# check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults | ||
fast-lstmp-layer name=fastlstm1 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts | ||
fast-lstmp-layer name=fastlstm2 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts | ||
fast-lstmp-layer name=fastlstm3 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts | ||
## adding the layers for chain branch | ||
output-layer name=output input=fastlstm3 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5 | ||
# adding the layers for xent branch | ||
# This block prints the configs for a separate output that will be | ||
# trained with a cross-entropy objective in the 'chain' models... this | ||
# has the effect of regularizing the hidden parts of the model. we use | ||
# 0.5 / args.xent_regularize as the learning rate factor- the factor of | ||
# 0.5 / args.xent_regularize is suitable as it means the xent | ||
# final-layer learns at a rate independent of the regularization | ||
# constant; and the 0.5 was tuned so as to make the relative progress | ||
# similar in the xent and regular final layers. | ||
output-layer name=output-xent input=fastlstm3 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 | ||
EOF | ||
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ | ||
fi | ||
|
||
if [ $stage -le 13 ]; then | ||
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then | ||
utils/create_split_dir.pl \ | ||
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage | ||
fi | ||
|
||
steps/nnet3/chain/train.py --stage $train_stage \ | ||
--cmd "$decode_cmd" \ | ||
--feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \ | ||
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \ | ||
--chain.xent-regularize $xent_regularize \ | ||
--chain.leaky-hmm-coefficient 0.1 \ | ||
--chain.l2-regularize 0.00005 \ | ||
--chain.apply-deriv-weights false \ | ||
--chain.lm-opts="--num-extra-lm-states=2000" \ | ||
--trainer.num-chunk-per-minibatch 64,32 \ | ||
--trainer.frames-per-iter 1500000 \ | ||
--trainer.max-param-change 2.0 \ | ||
--trainer.num-epochs 4 \ | ||
--trainer.optimization.shrink-value 0.99 \ | ||
--trainer.optimization.num-jobs-initial 3 \ | ||
--trainer.optimization.num-jobs-final 16 \ | ||
--trainer.optimization.initial-effective-lrate 0.001 \ | ||
--trainer.optimization.final-effective-lrate 0.0001 \ | ||
--trainer.optimization.momentum 0.0 \ | ||
--trainer.deriv-truncate-margin 8 \ | ||
--egs.stage $get_egs_stage \ | ||
--egs.opts "--frames-overlap-per-eg 0" \ | ||
--egs.chunk-width $frames_per_chunk \ | ||
--egs.chunk-left-context $chunk_left_context \ | ||
--egs.chunk-right-context $chunk_right_context \ | ||
--egs.chunk-left-context-initial 0 \ | ||
--egs.chunk-right-context-final 0 \ | ||
--egs.dir "$common_egs_dir" \ | ||
--cleanup.remove-egs $remove_egs \ | ||
--feat-dir data/${train_set}_hires \ | ||
--tree-dir $treedir \ | ||
--lat-dir exp/tri4_lats_nodup$suffix \ | ||
--dir $dir || exit 1; | ||
fi | ||
|
||
if [ $stage -le 14 ]; then | ||
# Note: it might appear that this $lang directory is mismatched, and it is as | ||
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from | ||
# the lang directory. | ||
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_sw1_tg $dir $dir/graph_sw1_tg | ||
fi | ||
|
||
|
||
graph_dir=$dir/graph_sw1_tg | ||
iter_opts= | ||
if [ ! -z $decode_iter ]; then | ||
iter_opts=" --iter $decode_iter " | ||
fi | ||
|
||
if [ $stage -le 15 ]; then | ||
rm $dir/.error 2>/dev/null || true | ||
for decode_set in train_dev eval2000; do | ||
( | ||
steps/nnet3/decode.sh --num-threads 4 \ | ||
--acwt 1.0 --post-decode-acwt 10.0 \ | ||
--nj 25 --cmd "$decode_cmd" $iter_opts \ | ||
--extra-left-context $extra_left_context \ | ||
--extra-right-context $extra_right_context \ | ||
--extra-left-context-initial 0 \ | ||
--extra-right-context-final 0 \ | ||
--frames-per-chunk "$frames_per_chunk_primary" \ | ||
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \ | ||
$graph_dir data/${decode_set}_hires \ | ||
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg || exit 1; | ||
if $has_fisher; then | ||
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ | ||
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \ | ||
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg} || exit 1; | ||
fi | ||
) & | ||
done | ||
wait | ||
if [ -f $dir/.error ]; then | ||
echo "$0: something went wrong in decoding" | ||
exit 1 | ||
fi | ||
fi | ||
|
||
if [ $stage -le 16 ]; then | ||
# looped decoding. Note: this does not make sense for BLSTMs or other | ||
# backward-recurrent setups, and for TDNNs and other non-recurrent there is no | ||
# point doing it because it would give identical results to regular decoding. | ||
rm $dir/.error 2>/dev/null || true | ||
for decode_set in train_dev eval2000; do | ||
( | ||
steps/nnet3/decode_looped.sh \ | ||
--acwt 1.0 --post-decode-acwt 10.0 \ | ||
--nj $decode_nj --cmd "$decode_cmd" $iter_opts \ | ||
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \ | ||
$graph_dir data/${decode_set}_hires \ | ||
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg_looped || exit 1; | ||
if $has_fisher; then | ||
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ | ||
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \ | ||
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg}_looped || exit 1; | ||
fi | ||
) & | ||
done | ||
wait | ||
if [ -f $dir/.error ]; then | ||
echo "$0: something went wrong in looped decoding" | ||
exit 1 | ||
fi | ||
fi | ||
|
||
if $test_online_decoding && [ $stage -le 17 ]; then | ||
# note: if the features change (e.g. you add pitch features), you will have to | ||
# change the options of the following command line. | ||
steps/online/nnet3/prepare_online_decoding.sh \ | ||
--mfcc-config conf/mfcc_hires.conf \ | ||
$lang exp/nnet3/extractor $dir ${dir}_online | ||
|
||
rm $dir/.error 2>/dev/null || true | ||
for decode_set in train_dev eval2000; do | ||
( | ||
# note: we just give it "$decode_set" as it only uses the wav.scp, the | ||
# feature type does not matter. | ||
|
||
steps/online/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd" $iter_opts \ | ||
--acwt 1.0 --post-decode-acwt 10.0 \ | ||
$graph_dir data/${decode_set}_hires \ | ||
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg || exit 1; | ||
if $has_fisher; then | ||
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \ | ||
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \ | ||
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg} || exit 1; | ||
fi | ||
) || touch $dir/.error & | ||
done | ||
wait | ||
if [ -f $dir/.error ]; then | ||
echo "$0: something went wrong in online decoding" | ||
exit 1 | ||
fi | ||
fi | ||
|
||
exit 0; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.