Skip to content

Commit

Permalink
[scripts] nnet3 : fix issue where LDA estimation failed for LSTMs wit…
Browse files Browse the repository at this point in the history
…h label delay (#1540)

xconfig : Added delay option for FixedAffineLayer. This will be used for ensuring the model specified in ref.config has at least the context required by the model specified in init.config
  • Loading branch information
vijayaditya authored and David Snyder committed Apr 12, 2017
1 parent b1e6ec8 commit 6599c9b
Show file tree
Hide file tree
Showing 3 changed files with 361 additions and 6 deletions.
304 changes: 304 additions & 0 deletions egs/swbd/s5c/local/chain/tuning/run_lstm_6k.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,304 @@
#!/bin/bash

# Copyright 2015 Johns Hopkins University (Author: Daniel Povey).
# 2015 Vijayaditya Peddinti
# 2015 Xingyu Na
# 2015 Pegah Ghahrmani
# 2017 Google Inc. (vpeddinti@google.com)
# Apache 2.0.



# run_lstm_6k.sh is like run_lstm_6j.sh but making
# various kaldi-5.1-related upgrades to the script.
# For the list of changes compare tuning/run_tdnn_lstm_1{c,d}.sh

set -e

# configs for 'chain'
stage=12
train_stage=-10
get_egs_stage=-10
speed_perturb=true
dir=exp/chain/lstm_6k # Note: _sp will get added to this if $speed_perturb == true.
decode_iter=
decode_nj=50

# training options
xent_regularize=0.01
self_repair_scale=0.00001
label_delay=5

chunk_left_context=40
chunk_right_context=0
# we'll put chunk-left-context-initial=0 and chunk-right-context-final=0
# directly without variables.
frames_per_chunk=140,100,160

# (non-looped) decoding options
frames_per_chunk_primary=$(echo $frames_per_chunk | cut -d, -f1)
extra_left_context=50
extra_right_context=0
# we'll put extra-left-context-initial=0 and extra-right-context-final=0
# directly without variables.


remove_egs=false
common_egs_dir=

test_online_decoding=false # if true, it will run the last decoding stage.

# End configuration section.
echo "$0 $@" # Print the command line for logging

. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh

if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already
# run those things.

suffix=
if [ "$speed_perturb" == "true" ]; then
suffix=_sp
fi

dir=${dir}$suffix
train_set=train_nodup$suffix
ali_dir=exp/tri4_ali_nodup$suffix
treedir=exp/chain/tri5_7d_tree$suffix
lang=data/lang_chain_2y


# if we are using the speed-perturbed data we need to generate
# alignments for it.
local/nnet3/run_ivector_common.sh --stage $stage \
--speed-perturb $speed_perturb \
--generate-alignments $speed_perturb || exit 1;


if [ $stage -le 9 ]; then
# Get the alignments as lattices (gives the CTC training more freedom).
# use the same num-jobs as the alignments
nj=$(cat exp/tri4_ali_nodup$suffix/num_jobs) || exit 1;
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \
data/lang exp/tri4 exp/tri4_lats_nodup$suffix
rm exp/tri4_lats_nodup$suffix/fsts.*.gz # save space
fi


if [ $stage -le 10 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi

if [ $stage -le 11 ]; then
# Build a tree using our new topology.
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" 7000 data/$train_set $lang $ali_dir $treedir
fi

if [ $stage -le 12 ]; then
echo "$0: creating neural net configs using the xconfig parser";

num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}')
[ -z $num_targets ] && { echo "$0: error getting num-targets"; exit 1; }
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python)

lstm_opts="decay-time=20"

mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
# Note : The delay variable will be used just in the init.config.
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat delay=$label_delay
# check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults
fast-lstmp-layer name=fastlstm1 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts
fast-lstmp-layer name=fastlstm2 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts
fast-lstmp-layer name=fastlstm3 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts
## adding the layers for chain branch
output-layer name=output input=fastlstm3 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' models... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 0.5 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
output-layer name=output-xent input=fastlstm3 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi

if [ $stage -le 13 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
fi

steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--trainer.num-chunk-per-minibatch 64,32 \
--trainer.frames-per-iter 1500000 \
--trainer.max-param-change 2.0 \
--trainer.num-epochs 4 \
--trainer.optimization.shrink-value 0.99 \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 16 \
--trainer.optimization.initial-effective-lrate 0.001 \
--trainer.optimization.final-effective-lrate 0.0001 \
--trainer.optimization.momentum 0.0 \
--trainer.deriv-truncate-margin 8 \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $frames_per_chunk \
--egs.chunk-left-context $chunk_left_context \
--egs.chunk-right-context $chunk_right_context \
--egs.chunk-left-context-initial 0 \
--egs.chunk-right-context-final 0 \
--egs.dir "$common_egs_dir" \
--cleanup.remove-egs $remove_egs \
--feat-dir data/${train_set}_hires \
--tree-dir $treedir \
--lat-dir exp/tri4_lats_nodup$suffix \
--dir $dir || exit 1;
fi

if [ $stage -le 14 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_sw1_tg $dir $dir/graph_sw1_tg
fi


graph_dir=$dir/graph_sw1_tg
iter_opts=
if [ ! -z $decode_iter ]; then
iter_opts=" --iter $decode_iter "
fi

if [ $stage -le 15 ]; then
rm $dir/.error 2>/dev/null || true
for decode_set in train_dev eval2000; do
(
steps/nnet3/decode.sh --num-threads 4 \
--acwt 1.0 --post-decode-acwt 10.0 \
--nj 25 --cmd "$decode_cmd" $iter_opts \
--extra-left-context $extra_left_context \
--extra-right-context $extra_right_context \
--extra-left-context-initial 0 \
--extra-right-context-final 0 \
--frames-per-chunk "$frames_per_chunk_primary" \
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \
$graph_dir data/${decode_set}_hires \
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg || exit 1;
if $has_fisher; then
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg} || exit 1;
fi
) &
done
wait
if [ -f $dir/.error ]; then
echo "$0: something went wrong in decoding"
exit 1
fi
fi

if [ $stage -le 16 ]; then
# looped decoding. Note: this does not make sense for BLSTMs or other
# backward-recurrent setups, and for TDNNs and other non-recurrent there is no
# point doing it because it would give identical results to regular decoding.
rm $dir/.error 2>/dev/null || true
for decode_set in train_dev eval2000; do
(
steps/nnet3/decode_looped.sh \
--acwt 1.0 --post-decode-acwt 10.0 \
--nj $decode_nj --cmd "$decode_cmd" $iter_opts \
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \
$graph_dir data/${decode_set}_hires \
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg_looped || exit 1;
if $has_fisher; then
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg}_looped || exit 1;
fi
) &
done
wait
if [ -f $dir/.error ]; then
echo "$0: something went wrong in looped decoding"
exit 1
fi
fi

if $test_online_decoding && [ $stage -le 17 ]; then
# note: if the features change (e.g. you add pitch features), you will have to
# change the options of the following command line.
steps/online/nnet3/prepare_online_decoding.sh \
--mfcc-config conf/mfcc_hires.conf \
$lang exp/nnet3/extractor $dir ${dir}_online

rm $dir/.error 2>/dev/null || true
for decode_set in train_dev eval2000; do
(
# note: we just give it "$decode_set" as it only uses the wav.scp, the
# feature type does not matter.

steps/online/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd" $iter_opts \
--acwt 1.0 --post-decode-acwt 10.0 \
$graph_dir data/${decode_set}_hires \
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg || exit 1;
if $has_fisher; then
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg} || exit 1;
fi
) || touch $dir/.error &
done
wait
if [ -f $dir/.error ]; then
echo "$0: something went wrong in online decoding"
exit 1
fi
fi

exit 0;
22 changes: 16 additions & 6 deletions egs/wsj/s5/steps/libs/nnet3/xconfig/basic_layers.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Copyright 2016 Johns Hopkins University (Dan Povey)
# 2016 Vijayaditya Peddinti
# 2017 Google Inc. (vpeddinti@google.com)
# Apache 2.0.

""" This module contains the parent class from which all layers are inherited
Expand Down Expand Up @@ -775,7 +776,7 @@ def _add_components(self, input_desc, input_dim, nonlinearities):
# input='[-1]' [Descriptor giving the input of the layer.]
# dim=None [Output dimension of layer; defaults to the same as the input dim.]
# affine-transform-file='' [Must be specified.]
#
# delay=0 [Optional delay for the output-node in init.config]
class XconfigFixedAffineLayer(XconfigLayerBase):
def __init__(self, first_token, key_to_value, prev_names = None):
assert first_token == 'fixed-affine-layer'
Expand All @@ -787,6 +788,7 @@ def set_default_configs(self):
self.config = { 'input':'[-1]',
'dim':-1,
'affine-transform-file':'',
'delay':0,
'write-init-config':True}

def check_configs(self):
Expand Down Expand Up @@ -819,11 +821,19 @@ def get_full_config(self):
transform_file = self.config['affine-transform-file']

if self.config['write-init-config']:
# to init.config we write an output-node with the name 'output' and
# with a Descriptor equal to the descriptor that's the input to this
# layer. This will be used to accumulate stats to learn the LDA transform.
line = 'output-node name=output input={0}'.format(descriptor_final_string)
ans.append(('init', line))
if self.config['delay'] != 0:
line = 'component name={0}.delayed type=NoOpComponent dim={1}'.format(self.name, input_dim)
ans.append(('init', line))
line = 'component-node name={0}.delayed component={0}.delayed input={1}'.format(self.name, descriptor_final_string)
ans.append(('init', line))
line = 'output-node name=output input=Offset({0}.delayed, {1})'.format(self.name, self.config['delay'])
ans.append(('init', line))
else:
# to init.config we write an output-node with the name 'output' and
# with a Descriptor equal to the descriptor that's the input to this
# layer. This will be used to accumulate stats to learn the LDA transform.
line = 'output-node name=output input={0}'.format(descriptor_final_string)
ans.append(('init', line))

# write the 'real' component to final.config
line = 'component name={0} type=FixedAffineComponent matrix={1}'.format(
Expand Down
Loading

0 comments on commit 6599c9b

Please sign in to comment.