Skip to content

An implementation of the recursive neural tensor network described by Socher et al (2013) in "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank"

License

Notifications You must be signed in to change notification settings

kalleknast/RNTN

Repository files navigation

RNTN

The Recursive Neural Tensor Network (RNTN) was state of the art for sentiment analysis in 2013.

This is an old (from 2015, before TensorFlow and Torch) GPU-implementation of RNTN described by Socher et al (2013) in Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank.

The model is trained using the Stanford Sentiment Treebank. Download extract extract train.txt and vocabulary.txt to ./data/. RNTN.py loads and trains the model.

Installation

The only dependencies are PyCUDA and NumPy.

Gradient derivations

Notation

  • $d$ - Length of word vector
  • $n$ - Node/layer
  • $x$ - Activation/output of neuron $(x \in \mathbb{R}^{d}$; $\tanh z)$
  • $z$ - Input to neuron $(z \in \mathbb{R}^{d}$; $z = Wx)$
  • $t$ - Target vector $(t \in \mathbb{R}^5$; 0-1 coded)
  • $y$ - Prediction $(y \in \mathbb{R}^5$; output of softmax layer - $softmax(z))$
  • $W_s$ - Classification matrix $(W_s \in \mathbb{R}^{5 \times d})$
  • $W$ - Weight matrix $(W \in \mathbb{R}^{d \times 2d})$
  • $V$ - Weight tensor $(V^{1:d} \in \mathbb{R}^{2d \times 2d \times d} )$
  • $L$ - Word embedding matrix $(L \in \mathbb{R}^{d \times |V|}$, $|V|$ is the size of the vocabulary)
  • $\theta$ - All weight parameters $(\theta = (W_s, W, V, L))$
  • $E$ - The cost as a function of $\theta$
  • $\delta_l$ - Error going to the left child node $(\delta_r$ error to the right child node)

Softmax

$$y_{i} = \frac{e^{z_i}}{\sum\limits_{j}e^{z_j}}$$

$$\frac{\partial y_i}{\partial z_j} = y_{i}(\delta_{ij} - y_{j})$$

$\delta_{ij}$ is the Kronecker's delta:

$$ \delta_{ij} = \begin{cases} 0 &\text{if } i \neq j, \\ 1 &\text{if } i=j. \end{cases} $$

Cost function $E$

$$ E(\theta) = - \sum\limits_{i}\sum\limits_{j}{t_{j}^{i} \log{y_{j}^{i}} + \lambda||\theta||^2} $$ $$ \frac{\partial E}{\partial y_j} = \frac{t_j}{y_j} $$

Activation function

$$ x_i = \tanh{z_i} $$ $$ \frac{\partial x_i}{\partial z_i} = 1 - \tanh^2{z_i} $$

Derivative of $E$ w.r.t. the sentiment classification matrix $W_s$

$$ \frac{\partial E}{\partial W_s} = \sum\limits_{k}\frac{\partial E}{\partial y_k}{\frac{\partial y_k}{\partial z^{s}}}{\frac{\partial z^{s}}{\partial W_{s}}} $$

Derivative of the cost function:

$$ \frac{\partial E}{\partial y} = \frac{t}{y} $$

Derivative of the $softmax$ function:

$$ \frac{\partial y_k}{\partial z^{s}{i}} = y{i}(\delta_{ik} - y_{k}) $$

Derivative of the input:

$$ \frac{\partial z^{s}}{\partial W_s} = x $$

Combined:

$$ \begin{split} \frac{\partial E}{\partial W_s} = \sum\limits_{k}\frac{t_k}{y_k}y_{k}(\delta_{ik} - y_{i})x_j \\ = x_j \sum\limits_{k}{t_k (\delta_{ik}-y_i)} \\ = x_j(y_i - t_i) \end{split} $$

Derivative of $E$ w.r.t. the weight matrix $W$

For one training sentence:

$$ \frac{\partial E}{\partial W} = \sum\limits_{k}\frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial z_{s}} \frac{\partial z_{s}}{\partial x} \frac{\partial x}{\partial z} \frac{\partial z}{\partial W} $$

Derivative of input to $node_n$ w.r.t. activation of $node_{n-1}$:

$$ \frac{\partial z}{\partial x} = W $$

Derivative of a node's activation w.r.t. its input:

$$ \begin{split} \frac{\partial x}{\partial z} = 1 - \tanh^2z \\ f'(x) = 1 - x^2 \\ f' \bigg( \bigg[ \begin{array}{c} x^l \ x^r \end{array} \bigg] \bigg) = 1 - \bigg[ \begin{array}{c} x^l \ x^r \end{array} \bigg] \otimes \bigg[ \begin{array}{c} x^l \ x^r \end{array} \bigg] \end{split} $$

Derivative of a node's input w.r.t. its weight matrix $W$:

$$ \frac{\partial z}{\partial W} = x $$

Combined:

$$ \begin{split} \delta^s = W_s{^T}(y - t) \otimes f'(x_n) \\ \frac{\partial E}{\partial W} = W^T \delta^s \otimes f' \bigg( \bigg[ \begin{array}{c} x_{n-1}^l \ x_{n-1}^r \end{array} \bigg] \bigg) \bigg[ \begin{array}{c} x_{n-1}^l \ x^{r}{_{n-1}} \end{array} \bigg]^T\\ \end{split} $$

Derivative of $E$ w.r.t. the slice $k$ of the tensor layer $V^{[k]}$

Top node $(node_n)$:

$$ \begin{split} \delta^s = W_s{^T}(y - t) \otimes (1 - x{n}^2) \ \frac{\partial E_n}{\partial V^{[k]}} = \delta^s{k} \bigg[ \begin{array}{c} x^l{{n-1}} \ x^r{{n-1}} \end{array} \bigg] \bigg[ \begin{array}{c} x_{n-1}^l \ x^{r}{_{n-1}} \end{array} \bigg]^T \ \end{split} $$

Left child node $(node_{n-1})$:

$$ \begin{split} \delta_{n} = \delta^{s,n} \ \delta^{n-1}{k} = \big( W^T \delta^n + S \big) \otimes f' \bigg( \bigg[ \begin{array}{c} x^l{n-1}\ x^r_{n-1} \end{array} \bigg] \bigg) \ S = \sum\limits_{k = 1}^d \delta^n \bigg( V^{[k]} + \big(V^{[k]})^T \bigg) \bigg[ \begin{array}{c} x^l_{n-1}\ x^r_{n-1} \end{array} \bigg] \ \delta^{n-1}l = \delta_l^{s,n-1} + \delta^{n-1}[1:d] \ \frac{\partial E{n-1}}{\partial V^{[k]}} = \frac{\partial E_n}{\partial V^{[k]}} + \delta^{n-1}l \bigg[ \begin{array}{c} x{n-2}^l \ x^{r}{_{n-2}} \end{array} \bigg]^T \end{split} $$

Reference: R. Socher, A. Perelygin, J.Y. Wu, J. Chuang, C.D. Manning, A.Y. Ng and C. Potts. 2013. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In EMNLP.

About

An implementation of the recursive neural tensor network described by Socher et al (2013) in "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published