我将自己在阅读《机器学习实战》过程中写的源代码放在这里。每个文件夹里也(可能)附有一点简单的笔记。
- Ch02 - Classifying with k-Nearest Neighbors
- Ch03 - Splitting datasets one feature at a time: decision trees
- Ch04 - Classifying with probability theory: naive Bayes
- Ch05 - Logistic regression
- Ch06 - Support vector machines
- Ch07 - Improving classification with the AdaBoost meta-algorithm
- Ch08 - Predicting numeric values: regression
- Ch09 - Tree-based regression
- Ch10 - Grouping unlabeled items using k-means clustering
- Ch11 - Association analysis with the Apriori algorithm
- Ch12 - Efficiently finding frequent itemsets with FP-growth
- Ch13 - Using principal component analysis to simplify data
- Ch14 - Simplifying data with the singular value decomposition
- Ch15 - Big data and MapReduce