Skip to content

Source code of our TACL paper "Controllable Summarization with Constrained Markov Decision Process"

License

Notifications You must be signed in to change notification settings

kenchan0226/control-sum-cmdp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Controllable Summarization with Constrained Markov Decision Process

This repository contains the source code for our TACL paper "Controllable Summarization with Constrained Markov Decision Process".

Some of our code are adapted from Huggingface Transformers, Fast Abstractive Summarization-RL, and summa-qa.

If you use our code, please cite our paper:

@article{DBLP:journals/tacl/cmdp-control-sum-21,
  author    = {Hou Pong Chan and Lu Wang and Irwin King},
  title     = {Controllable Summarization with Constrained Markov Decision Process},
  journal   = {Transactions of the Association for Computational Linguistics},
  year      = {2021}
}

Dependencies

  • python==3.7
  • pytorch==1.4.0
  • transformers==2.5.0
  • bert-score==0.3.1
  • moverscore==1.0.3
  • gensim
  • cytoolz
  • pyrouge
  • ntlk
  • tqdm
  • rreplace
  • sklearn
  • tensorflow==2.1.0 (for tensorboard)
  • tensorboardx
  • spacy==2.1.9
  • neuralcoref

Datasets

You can download the preprocessed datasets as follows

  • CNN/DM, for length and abstractiveness control.
  • Newsroom-b
  • CNN/DM, for entity control, the data for training the QA model of QAF1 score is located in the cloze_entity_squad_with_idx_and_unanswerable_and_paraphrase_and_repeat folder.
  • For the DUC-2002 dataset, please sign the agreements and request the DUC-2002 dataset follows the instructions here. After you obtain their approval, please send an email to me (hpchan@um.edu.mo) to request our preprocessed version of DUC-2002.

Length Control

Training

  • ML training for D.GPT2 model on CNN/DM.
python3 -m torch.distributed.launch \
--master_port=1234 \
--nproc_per_node 4 gpt2_summarization_finetuning.py \
--data_dir ../../datasets/cased-cnn-dailymail \
--output_dir saved_models/train_ml_distilgpt2_cnn_512_control_mode_1 \
--model_type gpt2 \
--model_name_or_path distilgpt2 \
--tokenizer_name distilgpt2 \
--cache_dir /data/model_cache \
--do_train \
--evaluate_during_training \
--per_gpu_train_batch_size 6 \
--per_gpu_eval_batch_size 16 \
--learning_rate 5e-5 \
--logging_steps 5000 \
--seed 9527 \
--num_train_epochs 12 \
--max_epochs 12 \
--control_modes 1 \
--gradient_accumulation_steps 3 \
--input_trunc_length 512 \
--fp16
  • CMDP training for D.GPT2 model on CNN/DM.
python3 -m torch.distributed.launch \
--master_port=1234 \
--nproc_per_node 4 gpt2_summarization_rl_finetuning.py \
--data_dir ../../datasets/cased-cnn-dailymail \
--output_dir saved_models/train_rl_distilgpt2_cnn_bertscore_control_mode_1_512 \
--model_type gpt2 \
--model_name_or_path saved_models/train_ml_distilgpt2_cnn_512_control_mode_1/epoch_states/10-epoch \
--tokenizer_name saved_models/train_ml_distilgpt2_cnn_512_control_mode_1 \
--cache_dir /data/model_cache \
--do_train \
--evaluate_during_training \
--per_gpu_train_batch_size 12 \
--per_gpu_eval_batch_size 24 \
--learning_rate 1.77e-5 \
--save_total_limit 1 \
--max_output_length 90 \
--seed 9527 \
--num_train_epochs 20 \
--reward_type 9 \
--baseline self \
--constrained_mdp \
--cost_types 13 15 \
--cost_thresholds 0.0 0.0 \
--lagrangian_init_val 0.01 \
--logging_steps 1000 \
--control_modes 1 \
--gradient_accumulation_steps 3 \
--fp16 \
--num_freeze_layers 4

Testing

  • Download pyrouge, and save it to path/to/pyrouge. git clone https://github.com/andersjo/pyrouge.git
  • Export ROUGE score environment variable export ROUGE=[path/to/pyrouge/tools/ROUGE-1.5.5]
  • Make evaluation reference for CNN/DM and DUC2002 datasets (only need to do it for once for each dataset) python make_eval_reference.py -data ../../datasets/cased-cnn-dailymail -split test python make_eval_reference_duc.py -data ../../datasets/duc2002_preprocessed_long -split test

Reference length bin control

  • Decode from D.GPT2 model using reference length bins on CNN/DM. Specify the model_name_or_path to the best checkpoint (highest validation reward).
python3 -u gpt2_summarization_prediction.py \
--model_type gpt2 \
--model_name_or_path saved_models/train_rl_distilgpt2_cnn_bertscore_control_mode_1_512/epoch_states/18-epoch \
--tokenizer_name saved_models/train_rl_distilgpt2_cnn_bertscore_control_mode_1_512 \
--pred_path pred/predict_rl_distilgpt2_cnn_512_control_mode_1 \
--data_dir ../../datasets/cased-cnn-dailymail \
--split test \
--temperature 1.0 \
--batch_size 8 \
--beam_size 5 \
--control_modes 1 \
--with_ground_truth_input \
--seed 9527 \
--input_trunc_length 512
  • Compute ROUGE scores
python evaluate_prediction.py -rouge -decode_dir pred/predict_rl_distilgpt2_cnn_512_control_mode_1 -data ../../datasets/cased-cnn-dailymail
  • Compute bin %
python output_len_stat.py -decode_dir pred/predict_rl_distilgpt2_cnn_512_control_mode_1 -data_dir ../../datasets/cased-cnn-dailymail -split test

Arbitrary length bin control

  • Decode from D.GPT2 model using a particular length bin on DUC2002. Set --desired_target_number to the desired length bin - 1. E.g., if the desired length bin is 1, you should set --desired_target_number 0.
python3 -u gpt2_summarization_prediction.py \
--model_type gpt2 \
--model_name_or_path saved_models/train_rl_distilgpt2_cnn_bertscore_control_mode_1_512/epoch_states/18-epoch \
--tokenizer_name saved_models/train_rl_distilgpt2_cnn_bertscore_control_mode_1_512 \
--pred_path pred/predict_rl_distilgpt2_duc_512_control_mode_1_bin_1 \
--data_dir ../../datasets/duc2002_preprocessed_long \
--split test \
--temperature 1.0 \
--batch_size 8 \
--beam_size 5 \
--control_modes 1 \
--desired_target_number 0 \
--multiple_reference \
--seed 9527 \
--input_trunc_length 512
  • Compute ROUGE scores for bin 1, bin4, bin 7, and bin 10 respectively.
python evaluate_prediction.py -rouge -decode_dir pred/predict_rl_distilgpt2_duc_512_control_mode_1_epoch_18_bin_1 -data ../../datasets/duc2002_preprocessed_long -multi_ref -n_words 33
python evaluate_prediction.py -rouge -decode_dir pred/predict_rl_distilgpt2_duc_512_control_mode_1_epoch_18_bin_4 -data ../../datasets/duc2002_preprocessed_long -multi_ref -n_words 46
python evaluate_prediction.py -rouge -decode_dir pred/predict_rl_distilgpt2_duc_512_control_mode_1_bin_7 -data ../../datasets/duc2002_preprocessed_long -multi_ref -n_words 59
python evaluate_prediction.py -rouge -decode_dir pred/predict_rl_distilgpt2_duc_512_control_mode_1_bin_10 -data ../../datasets/duc2002_preprocessed_long -multi_ref -n_words 94
  • Compute bin % for bin 1, bin4, bin 7, and bin 10 respectively.
python output_len_stat.py -decode_dir pred/predict_rl_distilgpt2_duc_512_control_mode_1_epoch_18_bin_1 -data_dir ../../datasets/duc2002_preprocessed_long -split test -target_len_bin 9 -multi_ref
python output_len_stat.py -decode_dir pred/predict_rl_distilgpt2_duc_512_control_mode_1_epoch_18_bin_4 -data_dir ../../datasets/duc2002_preprocessed_long -split test -target_len_bin 6 -multi_ref
python output_len_stat.py -decode_dir pred/predict_rl_distilgpt2_duc_512_control_mode_1_epoch_18_bin_7 -data_dir ../../datasets/duc2002_preprocessed_long -split test -target_len_bin 3 -multi_ref
python output_len_stat.py -decode_dir pred/predict_rl_distilgpt2_duc_512_control_mode_1_epoch_18_bin_10 -data_dir ../../datasets/duc2002_preprocessed_long -split test -target_len_bin 0 -multi_ref

Entity control

Preprocessing

  • Download QA model here for QA-F1 score. Then put this tar.gz file in the folder ./saved_models and decompress it. If you want to put the QA model in another path, please change the self.model_path and self.tokenizer_path in line 17 and 18 of utils/cloze_model.py.
  • (Optional) Alternatively, you can also train a QA model by yourself and pick the best checkpoint.
python3 -m torch.distributed.launch \
--master_port=1234 \
--nproc_per_node 4 train_cloze_model.py \
--data_dir ../../datasets/cased-cnn-dailymail_coref_3/cloze_entity_squad_with_idx_and_unanswerable_and_paraphrase_and_repeat \
--model_type bert \
--model_name_or_path twmkn9/bert-base-uncased-squad2 \
--output_dir saved_models/entity_cloze_with_unanswerable_paraphrase_repeat_bert_base_cnn_epoch_16 \
--cache_dir /mnt/sharedfolder/hpchan \
--max_seq_length 500 \
--do_train \
--do_eval \
--evaluate_during_training \
--do_lower_case \
--per_gpu_train_batch_size 11 \
--per_gpu_eval_batch_size 24 \
--gradient_accumulation_steps 1 \
--num_train_epochs 16 \
--logging_steps 8000 \
--save_steps 8000 \
--eval_all_checkpoints \
--fp16

Training

  • ML training for D.GPT2 model.
python3 -m torch.distributed.launch \
--master_port=1234 \
--nproc_per_node 4 gpt2_summarization_finetuning.py \
--data_dir ../../datasets/cased-cnn-dailymail_coref_3 \
--output_dir saved_models/train_ml_distilgpt2_cnn_control_mode_7_batch_10_4gpu_fp_16_epoch12_entity_first_512_no_datetime \
--model_type gpt2 \
--model_name_or_path distilgpt2 \
--tokenizer_name distilgpt2 \
--cache_dir /data/model_cache \
--do_train \
--evaluate_during_training \
--per_gpu_train_batch_size 6 \
--per_gpu_eval_batch_size 16 \
--learning_rate 5e-5 \
--logging_steps 5000 \
--seed 9527 \
--num_train_epochs 12 \
--max_epochs 12 \
--control_modes 7 \
--gradient_accumulation_steps 3 \
--fp16
  • RL training for D.GPT2 model.
python3 -m torch.distributed.launch \
--master_port=1234 \
--nproc_per_node 4 gpt2_summarization_rl_finetuning.py \
--data_dir ../../datasets/cased-cnn-dailymail_coref_3 \
--output_dir saved_models/train_distilgpt2_rl_cnn_512_control_mode_7_bertscore_reward_QAF1_1.0_entity_repeat_epoch20 \
--model_type gpt2 \
--model_name_or_path saved_models/train_ml_distilgpt2_cnn_control_mode_7_batch_10_4gpu_fp_16_epoch12_entity_first_512_no_datetime_from_10/epoch_states/12-epoch \
--tokenizer_name saved_models/train_ml_distilgpt2_cnn_control_mode_7_batch_10_4gpu_fp_16_epoch12_entity_first_512_no_datetime_from_10 \
--cache_dir /mnt/sharedfolder/hpchan \
--do_train \
--evaluate_during_training \
--per_gpu_train_batch_size 12 \
--per_gpu_eval_batch_size 24 \
--learning_rate 1.77e-5 \
--max_output_length 75 \
--seed 9527 \
--num_train_epochs 20 \
--reward_type 9 \
--baseline self \
--constrained_mdp \
--cost_types 28 29 15 \
--cost_thresholds 0.0 -0.9 0.0 \
--lagrangian_init_val 0.01 \
--logging_steps 1000 \
--control_modes 7 \
--gradient_accumulation_steps 3 \
--fp16 \
--num_freeze_layers 4

Testing

  • Download and export the path of ROUGE following the testing procedure of length control.

Reference entity control

  • Make evaluation reference for dataset. python make_eval_reference.py -data ../../datasets/cased-cnn-dailymail_coref_3 -split test
  • Decode from D.GPT2 model using reference entities as input. Specify the model_name_or_path to the best checkpoint (highest validation reward).
python3 -u gpt2_summarization_prediction.py \
--model_type gpt2 \
--model_name_or_path saved_models/train_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_QAF1_0.9_epoch20_from_7/epoch_states/20-epoch \
--tokenizer_name saved_models/train_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_QAF1_0.9_epoch20_from_7 \
--pred_path pred/predict_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_reward_cloze_squad_cost_with_negative_0.9 \
--data_dir ../../datasets/cased-cnn-dailymail_coref_3 \
--split test \
--temperature 1.0 \
--batch_size 8 \
--beam_size 5 \
--control_modes 7 \
--with_ground_truth_input \
--seed 9527 \
--input_trunc_length 512
  • Compute ROUGE Scores python evaluate_prediction.py -rouge -decode_dir pred/predict_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_reward_cloze_squad_cost_with_negative_0.9 -data ../../datasets/cased-cnn-dailymail_coref_3
  • Compute Appear % python evaluate_entity_appear.py --decode_dir pred/predict_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_reward_cloze_squad_cost_with_negative_0.9 --data ../../datasets/cased-cnn-dailymail_coref_3
  • Compute QA-F1 python evaluate_cloze.py --decode_dir pred/predict_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_reward_cloze_squad_cost_with_negative_0.9 --data ../../datasets/cased-cnn-dailymail_coref_3

Entities at different document sentences

  • Decode from D.GPT2 model for entities at particular document sentences. The option --split test_1to2_sent_ent indicates that we are summarizing the entities in sentences 1 and 2. Alternatively, you can set --split to test_3to4_sent_ent, test_5to6_sent_ent, or test_7to8_sent_ent.
python3 -u gpt2_summarization_prediction.py \
--model_type gpt2 \
--model_name_or_path saved_models/train_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_reward_QAF1_0.9_entity_repeat_epoch20_from_7/epoch_states/9-epoch \
--tokenizer_name saved_models/train_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_reward_QAF1_0.9_entity_repeat_epoch20_from_7 \
--pred_path pred/predict_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_reward_QAF1_0.9_with_repeat_epoch9_sent_12 \
--data_dir ../../datasets/cased-cnn-dailymail_coref_3 \
--split test \
--temperature 1.0 \
--batch_size 8 \
--beam_size 5 \
--control_modes 7 \
--with_ground_truth_input \
--split test_1to2_sent_ent \
--seed 9527 \
--input_trunc_length 512
  • Compute Appear % python evaluate_entity_appear.py --decode_dir pred/predict_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_reward_QAF1_0.9_with_repeat_epoch9_sent_12 --data ../../datasets/cased-cnn-dailymail_coref_3
  • Compute QA'-F1 python evaluate_cloze.py --decode_dir pred/predict_distilgpt2_rl_cnn_512_rouge2_control_mode_7_bertscore_reward_QAF1_0.9_with_repeat_epoch9_sent_12 --data ../../datasets/cased-cnn-dailymail_coref_3

Abstractivenes Control

Training

  • ML training for D.GPT2 model on Newsroom-b, change --data_dir to the path of cased-cnn-dailymail if you want to use CNN/DM.
python3 -m torch.distributed.launch \
--master_port=1234 \
--nproc_per_node 4 gpt2_summarization_finetuning.py \
--data_dir ../../datasets/newsroom_guardian_ws_nyt \
--output_dir saved_models/train_ml_distilgpt2_cnn_mode_5_3_bins_batch4_6gpu_fp_16_epoch_10_512_tokens \
--model_type gpt2 \
--model_name_or_path distilgpt2 \
--tokenizer_name distilgpt2 \
--cache_dir /data/model_cache \
--do_train \
--evaluate_during_training \
--per_gpu_train_batch_size 6 \
--per_gpu_eval_batch_size 16 \
--learning_rate 5e-5 \
--logging_steps 5000 \
--seed 9527 \
--num_train_epochs 10 \
--max_epochs 10 \
--control_modes 5 \
--gradient_accumulation_steps 3 \
--input_trunc_length 512 \
--fp16
  • CMDP training for D.GPT2 model on Newsroom-b, change --data_dir to the path of cased-cnn-dailymail if you want to use CNN/DM.
python3 -m torch.distributed.launch \
--master_port=1234 \
--nproc_per_node 4 gpt2_summarization_rl_finetuning.py \
--data_dir ../../datasets/newsroom_guardian_ws_nyt \
--output_dir saved_models/train_rl_distilgpt2_cnn_mode_5_3_bins_batch4_6gpu_fp_16_epoch_20_512_tokens \
--model_type gpt2 \
--model_name_or_path saved_models/train_ml_distilgpt2_cnn_mode_5_3_bins_batch4_6gpu_fp_16_epoch_10_512_tokens/epoch_states/10-epoch \
--tokenizer_name saved_models/train_ml_distilgpt2_cnn_mode_5_3_bins_batch4_6gpu_fp_16_epoch_10_512_tokens \
--cache_dir /data/model_cache \
--do_train \
--evaluate_during_training \
--per_gpu_train_batch_size 12 \
--per_gpu_eval_batch_size 24 \
--learning_rate 1.77e-5 \
--max_output_length 75 \
--seed 9527 \
--num_train_epochs 20 \
--reward_type 9 \
--baseline self \
--constrained_mdp \
--cost_types 22 15 30 \
--cost_thresholds 0.0 0.0 \
--lagrangian_init_val 0.01 \
--logging_steps 1000 \
--control_modes 5 \
--gradient_accumulation_steps 3 \
--fp16 \
--num_freeze_layers 4

Testing

  • Decode from D.GPT2 model with abstractiveness bin 1. You should set --desired_target_number 1 for abstractiveness bin 2 and --desired_target_number 2 for abstractiveness bin 3.
python3 -u gpt2_summarization_prediction.py \
--model_type gpt2 \
--model_name_or_path saved_models/train_rl_distilgpt2_cnn_bertscore_control_mode_5_new_epoch20/epoch_states/17-epoch \
--tokenizer_name saved_models/train_rl_distilgpt2_cnn_bertscore_control_mode_5_new_epoch20 \
--pred_path pred/predict_rl_distilgpt2_cnn_mode_5_new_3_bins_512_tokens_bin_0 \
--data_dir ../../datasets/newsroom_guardian_ws_nyt \
--split test \
--temperature 1.0 \
--batch_size 4 \
--beam_size 5 \
--control_modes 5 \
--desired_target_number 0 \
--seed 9527 \
--input_trunc_length 512
  • Evaluate BERTScore
python evaluate_bert_score.py --decode_dir pred/predict_rl_distilgpt2_cnn_mode_5_new_3_bins_512_tokens_bin_0 --data ../../datasets/newsroom_guardian_ws_nyt --model bert-base-uncased --batch_size 40 --rescale-with-baseline --lang en
  • Evaluate MoverScore
python evaluate_mover_score.py --decode_dir pred/predict_rl_distilgpt2_cnn_mode_5_new_3_bins_512_tokens_bin_0 --data ../../datasets/newsroom_guardian_ws_nyt --batch_size 64
  • Evaluate Bin % for bin 1 output, you should set -target_abs_bin 1 for abstractiveness bin 2 and -target_abs_bin 2 for abstractiveness bin 3.
python output_extractive_fragment_density_stat.py -data_dir ../../datasets/newsroom_guardian_ws_nyt -decode_dir pred/predict_rl_distilgpt2_newsroom_penalty_mode_5_new_3_bins_512_tokens_bin_0_epoch12_dgx -split test -target_abs_bin 0

Model Output

You can download our decoded summaries here

Values of learned Lagrangian multipliers

The values of learned Lagrangian multipliers λ changes dynamically during training. In the following tables, we report the learned values of λ of our D.GPT2+CMDP model when the validation reward converges.

Length control:

length bin constraint 3-gram repetition constraint
Values of learned λ 0.3312 0.3333

Entity control:

QA constraint entity repetition constraint 3-gram repetition constraint
Values of learned λ 0.1980 0.1810 0.1972

Abstractiveness control:

Abstractiveness bin constraint conjunction constraint 3-gram repetition constraint
Values of learned λ (CNN/DM) 0.2842 0.1271 0.2952
Values of learned λ (Newsroom-b) 0.4832 0.2210 0.4898

Distribution of length bins in the CNN/DM training set

Bin Range % of samples
1 (0,33] 10.32
2 (33,38] 9.07
3 (38,42] 9.85
4 (42,46] 8.61
5 (46,50] 8.68
6 (50,54] 9.41
7 (54,59] 10.58
8 (59,64] 8.23
9 (64,72] 8.85
10 (72,94] 15.78

About

Source code of our TACL paper "Controllable Summarization with Constrained Markov Decision Process"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages