-
Notifications
You must be signed in to change notification settings - Fork 254
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8aae1b8
commit 52e0b4c
Showing
1 changed file
with
37 additions
and
185 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,226 +1,78 @@ | ||
# Copyright 2023 The KerasNLP Authors | ||
# Copyright 2022 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""BERT backbone model.""" | ||
|
||
import copy | ||
|
||
import tensorflow as tf | ||
from tensorflow import keras | ||
|
||
from keras_nlp.layers.position_embedding import PositionEmbedding | ||
from keras_nlp.layers.transformer_encoder import TransformerEncoder | ||
@@ -24,7 +24,6 @@ | ||
from keras_nlp.models.backbone import Backbone | ||
from keras_nlp.models.bert.bert_presets import backbone_presets | ||
from keras_nlp.utils.python_utils import classproperty | ||
from keras_nlp.utils.python_utils import format_docstring | ||
|
||
|
||
def bert_kernel_initializer(stddev=0.02): | ||
return keras.initializers.TruncatedNormal(stddev=stddev) | ||
|
||
|
||
@keras.utils.register_keras_serializable(package="keras_nlp") | ||
class BertBackbone(Backbone): | ||
"""BERT encoder network. | ||
This class implements a bi-directional Transformer-based encoder as | ||
described in ["BERT: Pre-training of Deep Bidirectional Transformers for | ||
Language Understanding"](https://arxiv.org/abs/1810.04805). It includes the | ||
embedding lookups and transformer layers, but not the masked language model | ||
or next sentence prediction heads. | ||
The default constructor gives a fully customizable, randomly initialized BERT | ||
encoder with any number of layers, heads, and embedding dimensions. To load | ||
preset architectures and weights, use the `from_preset` constructor. | ||
Disclaimer: Pre-trained models are provided on an "as is" basis, without | ||
warranties or conditions of any kind. | ||
Args: | ||
vocabulary_size: int. The size of the token vocabulary. | ||
num_layers: int. The number of transformer layers. | ||
num_heads: int. The number of attention heads for each transformer. | ||
The hidden size must be divisible by the number of attention heads. | ||
hidden_dim: int. The size of the transformer encoding and pooler layers. | ||
intermediate_dim: int. The output dimension of the first Dense layer in | ||
a two-layer feedforward network for each transformer. | ||
dropout: float. Dropout probability for the Transformer encoder. | ||
max_sequence_length: int. The maximum sequence length that this encoder | ||
can consume. If None, `max_sequence_length` uses the value from | ||
sequence length. This determines the variable shape for positional | ||
embeddings. | ||
num_segments: int. The number of types that the 'segment_ids' input can | ||
take. | ||
Examples: | ||
```python | ||
input_data = { | ||
"token_ids": tf.ones(shape=(1, 12), dtype=tf.int64), | ||
"segment_ids": tf.constant( | ||
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0], shape=(1, 12) | ||
), | ||
"padding_mask": tf.constant( | ||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], shape=(1, 12) | ||
), | ||
@@ -77,7 +76,7 @@ class BertBackbone(Backbone): | ||
} | ||
# Pretrained BERT encoder | ||
model = keras_nlp.models.BertBackbone.from_preset("bert_base_en_uncased") | ||
model = keras_nlp.models.BertBackbone.from_preset("base_base_en_uncased") | ||
output = model(input_data) | ||
# Randomly initialized BERT encoder with a custom config | ||
model = keras_nlp.models.BertBackbone( | ||
vocabulary_size=30552, | ||
num_layers=12, | ||
num_heads=12, | ||
hidden_dim=768, | ||
intermediate_dim=3072, | ||
max_sequence_length=12, | ||
) | ||
output = model(input_data) | ||
``` | ||
""" | ||
|
||
def __init__( | ||
self, | ||
vocabulary_size, | ||
num_layers, | ||
num_heads, | ||
hidden_dim, | ||
intermediate_dim, | ||
dropout=0.1, | ||
max_sequence_length=512, | ||
@@ -105,7 +104,6 @@ def __init__( | ||
num_segments=2, | ||
**kwargs, | ||
): | ||
|
||
# Index of classification token in the vocabulary | ||
cls_token_index = 0 | ||
# Inputs | ||
token_id_input = keras.Input( | ||
shape=(None,), dtype="int32", name="token_ids" | ||
) | ||
segment_id_input = keras.Input( | ||
shape=(None,), dtype="int32", name="segment_ids" | ||
) | ||
padding_mask = keras.Input( | ||
shape=(None,), dtype="int32", name="padding_mask" | ||
) | ||
|
||
# Embed tokens, positions, and segment ids. | ||
token_embedding_layer = keras.layers.Embedding( | ||
input_dim=vocabulary_size, | ||
output_dim=hidden_dim, | ||
embeddings_initializer=bert_kernel_initializer(), | ||
name="token_embedding", | ||
) | ||
token_embedding = token_embedding_layer(token_id_input) | ||
position_embedding = PositionEmbedding( | ||
initializer=bert_kernel_initializer(), | ||
sequence_length=max_sequence_length, | ||
name="position_embedding", | ||
)(token_embedding) | ||
segment_embedding = keras.layers.Embedding( | ||
input_dim=num_segments, | ||
output_dim=hidden_dim, | ||
embeddings_initializer=bert_kernel_initializer(), | ||
name="segment_embedding", | ||
)(segment_id_input) | ||
|
||
# Sum, normalize and apply dropout to embeddings. | ||
x = keras.layers.Add()( | ||
(token_embedding, position_embedding, segment_embedding) | ||
) | ||
x = keras.layers.LayerNormalization( | ||
name="embeddings_layer_norm", | ||
axis=-1, | ||
epsilon=1e-12, | ||
dtype=tf.float32, | ||
)(x) | ||
x = keras.layers.Dropout( | ||
dropout, | ||
name="embeddings_dropout", | ||
)(x) | ||
|
||
# Apply successive transformer encoder blocks. | ||
for i in range(num_layers): | ||
x = TransformerEncoder( | ||
num_heads=num_heads, | ||
intermediate_dim=intermediate_dim, | ||
activation=lambda x: keras.activations.gelu( | ||
@@ -163,6 +161,7 @@ def __init__( | ||
x, approximate=True | ||
), | ||
dropout=dropout, | ||
layer_norm_epsilon=1e-12, | ||
kernel_initializer=bert_kernel_initializer(), | ||
name=f"transformer_layer_{i}", | ||
)(x, padding_mask=padding_mask) | ||
|
||
# Construct the two BERT outputs. The pooled output is a dense layer on | ||
# top of the [CLS] token. | ||
sequence_output = x | ||
pooled_output = keras.layers.Dense( | ||
hidden_dim, | ||
kernel_initializer=bert_kernel_initializer(), | ||
activation="tanh", | ||
name="pooled_dense", | ||
)(x[:, cls_token_index, :]) | ||
|
||
# Instantiate using Functional API Model constructor | ||
super().__init__( | ||
inputs={ | ||
"token_ids": token_id_input, | ||
"segment_ids": segment_id_input, | ||
"padding_mask": padding_mask, | ||
}, | ||
outputs={ | ||
"sequence_output": sequence_output, | ||
"pooled_output": pooled_output, | ||
@@ -190,44 +189,38 @@ def __init__( | ||
}, | ||
**kwargs, | ||
) | ||
|
||
# All references to `self` below this line | ||
self.vocabulary_size = vocabulary_size | ||
self.num_layers = num_layers | ||
self.num_heads = num_heads | ||
self.hidden_dim = hidden_dim | ||
self.intermediate_dim = intermediate_dim | ||
self.dropout = dropout | ||
self.num_layers = num_layers | ||
self.num_heads = num_heads | ||
self.max_sequence_length = max_sequence_length | ||
self.num_segments = num_segments | ||
self.dropout = dropout | ||
self.token_embedding = token_embedding_layer | ||
self.cls_token_index = cls_token_index | ||
|
||
def get_config(self): | ||
config = super().get_config() | ||
config.update( | ||
{ | ||
"vocabulary_size": self.vocabulary_size, | ||
"num_layers": self.num_layers, | ||
"num_heads": self.num_heads, | ||
"hidden_dim": self.hidden_dim, | ||
"intermediate_dim": self.intermediate_dim, | ||
"dropout": self.dropout, | ||
"max_sequence_length": self.max_sequence_length, | ||
"num_segments": self.num_segments, | ||
} | ||
) | ||
return config | ||
|
||
@property | ||
def token_embedding(self): | ||
return self.get_layer("token_embedding") | ||
return { | ||
"vocabulary_size": self.vocabulary_size, | ||
"hidden_dim": self.hidden_dim, | ||
"intermediate_dim": self.intermediate_dim, | ||
"num_layers": self.num_layers, | ||
"num_heads": self.num_heads, | ||
"max_sequence_length": self.max_sequence_length, | ||
"num_segments": self.num_segments, | ||
"dropout": self.dropout, | ||
"name": self.name, | ||
"trainable": self.trainable, | ||
} | ||
|
||
@classproperty | ||
def presets(cls): | ||
return copy.deepcopy(backbone_presets) | ||
|
||
@classmethod | ||
def from_preset(cls, preset, load_weights=True, **kwargs): | ||
return super().from_preset(preset, load_weights, **kwargs) | ||
|
||
|
||
BertBackbone.from_preset.__func__.__doc__ = Backbone.from_preset.__doc__ | ||
format_docstring( | ||
model_name=BertBackbone.__name__, | ||
example_preset_name="bert_base_en_uncased", | ||
preset_names='", "'.join(BertBackbone.presets), | ||
)(BertBackbone.from_preset.__func__) |