Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions keras_nlp/layers/modeling/masked_lm_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,9 +153,11 @@ def build(self, inputs_shape, masked_positions_shape=None):
activation=self.intermediate_activation,
kernel_initializer=self.kernel_initializer,
bias_initializer=self.bias_initializer,
dtype=self._dtype_policy,
)
self._layer_norm = keras.layers.LayerNormalization(
epsilon=self.layer_norm_epsilon,
dtype=self._dtype_policy,
)
if masked_positions_shape:
gather_length = masked_positions_shape[1]
Expand All @@ -181,18 +183,25 @@ def call(self, inputs, masked_positions):
# Gather the encoded tokens at the masked indices.
masked_positions = ops.expand_dims(masked_positions, axis=-1)
x = ops.take_along_axis(inputs, masked_positions, axis=1)
print("XXX/1", x.dtype)

# Apply a trainable linear transformation and a layer norm.
x = self._dense(x)
print("XXX/2", x.dtype)
x = self._layer_norm(x)
print("XXX/3", x.dtype)

# Transform encodings to vocabulary_size predictions.
if self.embedding_weights is None:
kernel = self._kernel
print("XXX/4", kernel)
else:
kernel = ops.cast(self.embedding_weights, self.compute_dtype)
print("XXX/5", kernel)
kernel = ops.transpose(kernel)
print("XXX/6", kernel)
outputs = ops.matmul(x, kernel)
print("XXX", outputs.dtype, self._bias.dtype)
outputs = outputs + self._bias

# Apply a final activation.
Expand Down
53 changes: 53 additions & 0 deletions keras_nlp/layers/modeling/masked_lm_head_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,9 @@

import os

import tensorflow as tf
from absl.testing import parameterized

from keras_nlp.backend import keras
from keras_nlp.backend import ops
from keras_nlp.layers.modeling import masked_lm_head
Expand All @@ -36,6 +39,30 @@ def test_valid_call(self):
position_data = ops.random.randint(minval=0, maxval=10, shape=(4, 5))
model((token_data, position_data))

@parameterized.named_parameters(
("bfloat16", tf.bfloat16),
("float16", tf.float16),
("float32", tf.float32),
("float64", tf.float64),
)
def test_valid_call_with_dtype(self, dtype):
head = masked_lm_head.MaskedLMHead(
vocabulary_size=100,
activation="softmax",
dtype=dtype,
)
encoded_tokens = keras.Input(shape=(10, 16))
positions = keras.Input(shape=(5,), dtype="int32")
outputs = head(encoded_tokens, masked_positions=positions)
model = keras.Model((encoded_tokens, positions), outputs)

token_data = ops.random.uniform(shape=(4, 10, 16))
position_data = ops.random.randint(minval=0, maxval=10, shape=(4, 5))
model((token_data, position_data))

for w in head.weights:
self.assertEqual(w.dtype, dtype, "Wrong type: " + w.name)

def test_valid_call_with_embedding_weights(self):
embedding = keras.layers.Embedding(100, 16)
embedding.build((4, 10))
Expand Down Expand Up @@ -119,6 +146,32 @@ def test_one_train_step(self):
loss = model.train_on_batch(x=(token_data, position_data), y=label_data)
self.assertGreater(loss, 0)

@parameterized.named_parameters(
("bfloat16", tf.bfloat16),
("float16", tf.float16),
("float32", tf.float32),
("float64", tf.float64),
)
def test_one_train_step_with_dtype(self, dtype):
head = masked_lm_head.MaskedLMHead(
vocabulary_size=100,
dtype=dtype,
)
encoded_tokens = keras.Input(shape=(10, 16))
positions = keras.Input(shape=(5,), dtype="int32")
outputs = head(encoded_tokens, masked_positions=positions)
model = keras.Model((encoded_tokens, positions), outputs)

token_data = ops.random.uniform(shape=(4, 10, 16))
position_data = ops.random.randint(minval=0, maxval=10, shape=(4, 5))
label_data = ops.random.randint(minval=0, maxval=2, shape=(4, 5, 1))

loss = keras.losses.SparseCategoricalCrossentropy(from_logits=False)
optimizer = keras.optimizers.Adam()
model.compile(loss=loss, optimizer=optimizer)
loss = model.train_on_batch(x=(token_data, position_data), y=label_data)
self.assertGreater(loss, 0)

def test_saved_model(self):
head = masked_lm_head.MaskedLMHead(
vocabulary_size=100,
Expand Down