Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Port mistral transformer checkpoint #1768

Merged
merged 9 commits into from
Aug 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions keras_nlp/src/utils/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,12 @@
from keras_nlp.src.utils.transformers.convert_llama3 import (
load_llama3_tokenizer,
)
from keras_nlp.src.utils.transformers.convert_mistral import (
load_mistral_backbone,
)
from keras_nlp.src.utils.transformers.convert_mistral import (
load_mistral_tokenizer,
)
from keras_nlp.src.utils.transformers.convert_pali_gemma import (
load_pali_gemma_backbone,
)
Expand Down Expand Up @@ -74,6 +80,8 @@ def load_transformers_backbone(cls, preset, load_weights):
return load_albert_backbone(cls, preset, load_weights)
if cls.__name__ == "BartBackbone":
return load_bart_backbone(cls, preset, load_weights)
if cls.__name__ == "MistralBackbone":
return load_mistral_backbone(cls, preset, load_weights)
raise ValueError(
f"{cls} has not been ported from the Hugging Face format yet. "
"Please check Hugging Face Hub for the Keras model. "
Expand Down Expand Up @@ -109,6 +117,8 @@ def load_transformers_tokenizer(cls, preset):
return load_albert_tokenizer(cls, preset)
if cls.__name__ == "BartTokenizer":
return load_bart_tokenizer(cls, preset)
if cls.__name__ == "MistralTokenizer":
return load_mistral_tokenizer(cls, preset)
raise ValueError(
f"{cls} has not been ported from the Hugging Face format yet. "
"Please check Hugging Face Hub for the Keras model. "
Expand Down
143 changes: 143 additions & 0 deletions keras_nlp/src/utils/transformers/convert_mistral.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np

from keras_nlp.src.utils.preset_utils import HF_CONFIG_FILE
from keras_nlp.src.utils.preset_utils import get_file
from keras_nlp.src.utils.preset_utils import jax_memory_cleanup
from keras_nlp.src.utils.preset_utils import load_config
from keras_nlp.src.utils.transformers.safetensor_utils import SafetensorLoader


def convert_backbone_config(transformers_config):
return {
"vocabulary_size": transformers_config["vocab_size"],
"num_layers": transformers_config["num_hidden_layers"],
"num_query_heads": transformers_config["num_attention_heads"],
"hidden_dim": transformers_config["hidden_size"],
"intermediate_dim": transformers_config["intermediate_size"],
"num_key_value_heads": transformers_config["num_key_value_heads"],
"rope_max_wavelength": transformers_config["rope_theta"],
"layer_norm_epsilon": transformers_config["rms_norm_eps"],
"sliding_window": transformers_config["sliding_window"],
}


def convert_weights(backbone, loader):
# Embeddings
loader.port_weight(
keras_variable=backbone.token_embedding.embeddings,
hf_weight_key="model.embed_tokens.weight",
hook_fn=lambda hf_tensor, _: hf_tensor.astype(np.float16),
)
loader.port_weight(
keras_variable=backbone.token_embedding.reverse_embeddings,
hf_weight_key="lm_head.weight",
hook_fn=lambda hf_tensor, _: np.transpose(
hf_tensor.astype(np.float16), axes=(1, 0)
),
)

# Attention blocks
for index in range(backbone.num_layers):
decoder_layer = backbone.transformer_layers[index]

# Norm layers
loader.port_weight(
keras_variable=decoder_layer._self_attention_layernorm.scale,
hf_weight_key=f"model.layers.{index}.input_layernorm.weight",
hook_fn=lambda hf_tensor, _: hf_tensor.astype(np.float16),
)
loader.port_weight(
keras_variable=decoder_layer._feedforward_layernorm.scale,
hf_weight_key=f"model.layers.{index}.post_attention_layernorm.weight",
hook_fn=lambda hf_tensor, _: hf_tensor.astype(np.float16),
)

# Attention layers
loader.port_weight(
keras_variable=decoder_layer._self_attention_layer._query_dense.kernel,
hf_weight_key=f"model.layers.{index}.self_attn.q_proj.weight",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
np.transpose(hf_tensor.astype(np.float16)), keras_shape
),
)
loader.port_weight(
keras_variable=decoder_layer._self_attention_layer._key_dense.kernel,
hf_weight_key=f"model.layers.{index}.self_attn.k_proj.weight",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
np.transpose(hf_tensor.astype(np.float16)), keras_shape
),
)
loader.port_weight(
keras_variable=decoder_layer._self_attention_layer._value_dense.kernel,
hf_weight_key=f"model.layers.{index}.self_attn.v_proj.weight",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
np.transpose(hf_tensor.astype(np.float16)), keras_shape
),
)
loader.port_weight(
keras_variable=decoder_layer._self_attention_layer._output_dense.kernel,
hf_weight_key=f"model.layers.{index}.self_attn.o_proj.weight",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
np.transpose(hf_tensor.astype(np.float16)), keras_shape
),
)

# MLP layers
loader.port_weight(
keras_variable=decoder_layer._feedforward_gate_dense.kernel,
hf_weight_key=f"model.layers.{index}.mlp.gate_proj.weight",
hook_fn=lambda hf_tensor, _: np.transpose(
hf_tensor.astype(np.float16), axes=(1, 0)
),
)
loader.port_weight(
keras_variable=decoder_layer._feedforward_intermediate_dense.kernel,
hf_weight_key=f"model.layers.{index}.mlp.up_proj.weight",
hook_fn=lambda hf_tensor, _: np.transpose(
hf_tensor.astype(np.float16), axes=(1, 0)
),
)
loader.port_weight(
keras_variable=decoder_layer._feedforward_output_dense.kernel,
hf_weight_key=f"model.layers.{index}.mlp.down_proj.weight",
hook_fn=lambda hf_tensor, _: np.transpose(
hf_tensor.astype(np.float16), axes=(1, 0)
),
)

# Normalization
loader.port_weight(
keras_variable=backbone.layer_norm.scale,
hf_weight_key="model.norm.weight",
hook_fn=lambda hf_tensor, _: hf_tensor.astype(np.float16),
)

return backbone


def load_mistral_backbone(cls, preset, load_weights):
transformers_config = load_config(preset, HF_CONFIG_FILE)
keras_config = convert_backbone_config(transformers_config)
backbone = cls(**keras_config)
if load_weights:
jax_memory_cleanup(backbone)
with SafetensorLoader(preset) as loader:
convert_weights(backbone, loader)
return backbone


def load_mistral_tokenizer(cls, preset):
return cls(get_file(preset, "tokenizer.model"))
27 changes: 27 additions & 0 deletions keras_nlp/src/utils/transformers/convert_mistral_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest

from keras_nlp.src.models.mistral.mistral_causal_lm import MistralCausalLM
from keras_nlp.src.tests.test_case import TestCase


class TestTask(TestCase):
@pytest.mark.large
def test_convert_tiny_preset(self):
model = MistralCausalLM.from_preset("hf://cosmo3769/tiny-mistral-test")
prompt = "What is your favorite condiment?"
model.generate([prompt], max_length=15)

# TODO: compare numerics with huggingface model
Loading