This code is based on the implementation of ByteTrack, BoT-SORT
SMILEtrack: SiMIlarity LEarning for Multiple Object Tracking
Preprint will be appearing soon
SMILEtrack code is based on ByteTrack and BoT-SORT
Visit their installation guides for more setup options.
PRBNet MOT17 weight link
PRBNet MOT20 weight link
SLM weight link
Download MOT17 from the official website. And put them in the following structure:
<dataets_dir>
│
├── MOT17
│ ├── train
│ └── test
└——————crowdhuman
| └——————Crowdhuman_train
| └——————Crowdhuman_val
| └——————annotation_train.odgt
| └——————annotation_val.odgt
└——————MOT20
| └——————train
| └——————test
└——————Cityscapes
└——————images
└——————labels_with_ids
Single GPU training
cd <prb_dir>
$ python train_aux.py --workers 8 --device 0 --batch-size 4 --data data/mot.yaml --img 1280 1280 --cfg cfg/training/PRB_Series/yolov7-PRB-2PY-e6e-tune-auxpy1.yaml --weights './yolov7-prb-2py-e6e.pt' --name yolov7-prb --hyp data/hyp.scratch.p6.yaml --epochs 100
<dataets_dir>
├─A
├─B
├─label
└─list
A: images of t1 phase;
B: images of t2 phase;
label: label maps;
list: contains train.txt, val.txt and test.txt, each file records the image names (XXX.png) in the change detection dataset.
For the more detail of the training setting, you can follow BIT_CD training code.
By submitting the txt files produced in this part to MOTChallenge website and you can get the same results as in the paper. Tuning the tracking parameters carefully could lead to higher performance. In the paper we apply ByteTrack's calibration.
cd <BoT-SORT_dir>
$ python3 tools/track.py <dataets_dir/MOT17> --default-parameters --with-reid --benchmark "MOT17" --eval "test" --fp16 --fuse
$ python3 tools/interpolation.py --txt_path <path_to_track_result>
cd <BoT-SORT_dir>
$ python3 tools/track_prb.py <dataets_dir/MOT17> --default-parameters --with-reid --benchmark "MOT17" --eval "test" --fp16 --fuse
$ python3 tools/interpolation.py --txt_path <path_to_track_result>
Tracker | MOTA | IDF1 | HOTA |
---|---|---|---|
SMILEtrack | 81.06 | 80.5 | 65.28 |
Tracker | MOTA | IDF1 | HOTA |
---|---|---|---|
SMILEtrack | 78.19 | 77.53 | 65.28 |
A large part of the codes, ideas and results are borrowed from PRBNet, ByteTrack, BoT-SORT, yolov7, thanks for their excellent work!