Releases: kertansul/dl-docker
Releases · kertansul/dl-docker
upgrade Tensorflow to 2.4.1
add py3 env; update frameworks
- Dockerfile.gpu is now split to Dockerfile.py3 and Dockerfile.py2
- upgrade tf to v1.11.0
- upgrade PyTorch to v0.4.1
add Caffe2
to test instance segmentation on https://github.com/facebookresearch/Detectron
upgrade tf, add torchvision
- upgrade tensorflow to v1.9-rc1
- add torchvision v0.2.1
cuda9.0 + cudnn7
Frameworks upgrade
- Tensorflow: 1.8.0-rc1
- nvidia caffe: 0.17
- Pytorch: v0.4.0
Other changes
- Pytorch installation is changed from
precomputed library
tocompiling from source
- pros: for keeping up with latest features
- cons: doubles the image size as well; however,
storage is cheap
tensorflow-pytorch-caffe
major update, cleanup lots of unused dependencies
Environment
- ubuntu 16.04
- cuda 8.0
- cudnn 6
DL frameworks included
- Tensorflow 1.4.1 (built from source)
- Tensorboard 0.4.0
- Tensorflow Profiler
- Google pprof
- nvidia-Caffe 0.16
- pytorch 0.2.0
Other
- bashrc and vimrc are now setup automatically
various framework updates
cudnn 5->6
nvCaffe 0.15->0.16
tensorflow 1.0->1.3.0
pytorch 0.2.0
digits 5.0->6.0
Upgrade Frameworks to latest version
- Upgrade CUDA to 8.0.44
- Upgrade TensorFlow to 1.0.1-cp27
- Upgrade Torch to latest version
- Upgrade Theano to rel-0.9.0rc4
- Upgrade Keras to 2.0.1
Create .digits and add t-SNE to .gpu
Add t-SNE https://github.com/oreillymedia/t-SNE-tutorial
Update theano to bleeding-edge
Use bleeding-edge theano Solve https://github.com/Theano/Theano/issues/4759 on 0.8.2