Skip to content

kevinyu98/spark-sql-server

 
 

Repository files navigation

Build Status

A Spark SQL server based on the PostgreSQL V3 protocol. This is just a prototype to check feasibility for yet another SQL JDBC/ODBC server in Apache Spark (See SPARK-15816 for related discussions).

Running the SQL JDBC/ODBC server

To start the JDBC/ODBC server, run the following in the root directory:

$ ./sbin/start-sql-server.sh

This script accepts all bin/spark-submit command line options in Spark, plus options for the SQL server. You may run ./sbin/start-sql-server.sh --help for a complete list of all available options. By default, the server listens on localhost:5432.

Now you can use a PostgreSQL psql command to test the SQL JDBC/ODBC server:

$ psql -h localhost -d default

If you have no psql command and you use the Amazon Linux AMI, you can run sudo yum install postgresql95 to install PostgreSQL client programs. Since the SSL mode of this psql command is enabled by default, you need to turn off the SSL mode to connect the SQL server:

$ psql postgresql://localhost:5432/default?sslmode=disable

Use PostgreSQL JDBC drivers

To connect the SQL server, you can use mature and widely-used PostgreSQL JDBC drivers. You can get the driver, add it to a class path, and write code like;

import java.sql.*;
import java.util.Properties;

public class JdbcTest {
  public static void main(String[] args) {
    try {
      // Register the PostgreSQL JDBC driver
      Class.forName("org.postgresql.Driver");

      // Connect to a 'default' database in the SPARK SQL server
      String dbName = "default";
      Properties props = new Properties();
      props.put("user", "maropu");
      Connection con = DriverManager.getConnection("jdbc:postgresql://localhost:5432/" + dbName, props);

      // Do something...
      Statement stmt = con.createStatement();
      stmt.executeQuery("CREATE TEMPORARY VIEW t AS SELECT * FROM VALUES (1, 1), (1, 2) AS t(a, b)").close();
      ResultSet rs = stmt.executeQuery("SELECT * FROM t");
      while (rs.next()) {
        System.out.println("a=" + rs.getInt("a") + " b=" + rs.getInt("b"));
      }
      rs.close();
      stmt.close();
      con.close();
    } catch (Exception e) {
      // Do error handling here...
    }
  }
}

Use the PostgreSQL libpq C library

You can also use libpq to connect the SQL server from C clients:

#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>

static void exit_nicely(PGconn *conn) {
    PQfinish(conn);
    exit(1);
}

int main(int argc, char **argv) {
    // Connect to a 'default' database in the SPARK SQL server''
    PGconn *conn = PQconnectdb("host=localhost port=5432 dbname=default");
    if (PQstatus(conn) != CONNECTION_OK) {
        exit_nicely(conn);
    }

    // Do something...
    PGresult *res = PQexec(conn, "SELECT * FROM VALUES (1, 1), (1, 2) AS t(a, b)");
    if (PQresultStatus(res) != PGRES_TUPLES_OK) {
        PQclear(res);
        exit_nicely(conn);
    }
    for (int i = 0; i < PQntuples(res); i++) {
        printf("a=%s b=%s\n", PQgetvalue(res, i, 0), PQgetvalue(res, i, 1));
    }

    PQclear(res);
    PQfinish(conn);
    return 0;
}

Cursor mode

To enable a cursor mode on your JDBC driver, you make sure autocommit is off and you need to set fetch size throught Statement.setFetchSize (See descriptions in Chapter 5. Issuing a Query and Processing the Result);

      // Make sure autocommit is off
      Connection con = DriverManager.getConnection("jdbc:postgresql://localhost:5432/" + dbName, props);
      con.setAutoCommit(false);

      // Turn use of the cursor on.
      Statement stmt = con.createStatement();
      stmt.setFetchSize(50);
      ResultSet rs = stmt.executeQuery("SELECT * FROM range(10000000)");
      while (rs.next()) {
        System.out.println("id=" + rs.getLong("id"));
      }

Also, you could set spark.sql.server.incrementalCollect.enabled for memory efficiency when launching the SQL server. If enabled, the SQL server collects result data partition-by-parititon.

PostgreSQL syntax

The SQL server supports some of PostgreSQL dialect;

$psql -h localhost -d default
Type "help" for help.

maropu=> CREATE TEMPORARY VIEW t AS SELECT id AS key, id :: TEXT AS value FROM generate_series(0, 20, 5);
--
(0 rows)

maropu=> SELECT * FROM t WHERE value ~ '^1;
 key | value
-----+-------
  10 | 10
  15 | 15
(2 rows)

Authentication

SSL Encryption

To enable SSL encryption, you need to set the following configurations in start-sql-server.sh;

$ ./sbin/start-sql-server.sh \
    --conf spark.sql.server.ssl.enabled=true \
    --conf spark.sql.server.ssl.keystore.path=<your keystore path> \
    --conf spark.sql.server.ssl.keystore.passwd=<your keystore password>

If you use self-signed certificates, you follow 3 steps below to create self-signed SSL certificates;

// Create the self signed certificate and add it to a keystore file
$ keytool -genkey -alias ssltest -keyalg RSA -keystore server.keystore -keysize 2048

// Export this certificate from server.keystore to a certificate file
$ keytool -export -alias ssltest -file ssltest.crt -keystore server.keystore

// Add this certificate to the client's truststore to establish trust
$ keytool -import -trustcacerts -alias ssltest -file ssltest.crt -keystore client.truststore

You set the generated server.keystore to spark.sql.server.ssl.keystore.path and add a new entry (ssl=true) in Properties when creating a JDBC connection. Then, you pass client.truststore when running JdbcTest (See the PostgreSQL JDBC driver documentation for more information);

$ javac JdbcTest.java

$ java -Djavax.net.ssl.trustStore=client.truststore -Djavax.net.ssl.trustStorePassword=<password> JdbcTest

Kerberos (GSSAPI) Supports

You can use the SQL server on a Kerberos-enabled cluster only in the YARN mode because Spark supports Kerberos only in that mode. To enable GSSAPI, you need to set the following configurations in start-sql-server.sh;

$ ./sbin/start-sql-server.sh \
    --conf spark.yarn.keytab=<keytab path for server principal> \
    --conf spark.yarn.principal=<Kerberos principal server>

Then, you set a Kerberos service name (kerberosServerName) in Properties when creating a JDBC connection. See Connection Parameters for more information.

High Availability

A high availability policy of the Spark SQL server is along with stand-alone Master one; by utilizing ZooKeeper, you can launch multiple SQL servers connected to the same ZooKeeper instance. One will be elected “leader” and the others will remain in standby mode. If the current leader dies, another Master will be elected and initialize SQLContext with given configurations. After you have a ZooKeeper cluster set up, you can enable high availability by starting multiple servers with the same ZooKeeper configuration (ZooKeeper URL and directory) as follows;

$ ./sbin/start-sql-server.sh \
    --conf spark.sql.server.recoveryMode=ZOOKEEPER \
    --conf spark.deploy.zookeeper.url=<ZooKeeper URL>
    --conf spark.deploy.zookeeper.dir=<ZooKeeper directory to store recovery state>

Bug reports

If you hit some bugs and requests, please leave some comments on Issues or Twitter(@maropu).

About

Spark SQL server based on the PostgreSQL protocol

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Scala 89.4%
  • ANTLR 7.9%
  • Shell 2.7%