Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

use naturalneighbour interpolation instead of linear barycentric #306

Merged
merged 6 commits into from
Jul 8, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion hippunfold/config/snakebids.yml
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,7 @@ parse_args:
--inject_template:
choices:
- 'upenn'
- 'dHCP'
- 'MBMv2'
- 'MBMv3'
- 'CIVM'
Expand Down Expand Up @@ -327,11 +328,15 @@ parse_args:
- synthseg_v0.2
- neonateT1w_v2




# --- surface specific configuration --

autotop_labels:
- 'hipp'
- 'dentate'


surf_types:
hipp:
- midthickness
Expand Down
43 changes: 36 additions & 7 deletions hippunfold/workflow/rules/common.smk
Original file line number Diff line number Diff line change
Expand Up @@ -24,41 +24,69 @@ def get_modality_suffix(modality):


def get_final_spec():
if len(config["hemi"]) == 2:
specs = expand(
specs = expand(
bids(
root=root,
datatype="surf",
den="{density}",
space="{space}",
hemi="{hemi}",
label="{autotop}",
suffix="surfaces.spec",
jordandekraker marked this conversation as resolved.
Show resolved Hide resolved
**config["subj_wildcards"],
),
density=config["output_density"],
space=ref_spaces,
hemi=config["hemi"],
autotop=config["autotop_labels"],
allow_missing=True,
)
return specs


def get_final_surf():
gii = []
gii.extend(
expand(
bids(
root=root,
datatype="surf",
den="{density}",
suffix="{surfname}.surf.gii",
space="{space}",
hemi="{hemi}",
label="{autotop}",
suffix="surfaces.spec",
**config["subj_wildcards"],
),
density=config["output_density"],
space=ref_spaces,
hemi=config["hemi"],
autotop=config["autotop_labels"],
surfname=config["surf_types"]["hipp"],
allow_missing=True,
)
else:
specs = expand(
)
gii.extend(
expand(
bids(
root=root,
datatype="surf",
den="{density}",
suffix="{surfname}.surf.gii",
space="{space}",
hemi="{hemi}",
label="{autotop}",
suffix="surfaces.spec",
**config["subj_wildcards"],
),
density=config["output_density"],
space=ref_spaces,
hemi=config["hemi"],
autotop=config["autotop_labels"],
surfname=config["surf_types"]["dentate"],
allow_missing=True,
)
return specs
)
return gii


def get_final_subfields():
Expand Down Expand Up @@ -313,6 +341,7 @@ def get_final_qc():
def get_final_subj_output():
subj_output = []
subj_output.extend(get_final_spec())
subj_output.extend(get_final_surf())
subj_output.extend(get_final_subfields())
subj_output.extend(get_final_coords())
subj_output.extend(get_final_transforms())
Expand Down
2 changes: 0 additions & 2 deletions hippunfold/workflow/rules/warps.smk
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,6 @@ rule create_warps_hipp:
),
labelmap=get_labels_for_laplace,
params:
interp_method="linear",
gm_labels=lambda wildcards: config["laplace_labels"]["AP"]["gm"],
epsilon=lambda wildcards: config["unfold_crop_epsilon_fractions"],
resources:
Expand Down Expand Up @@ -294,7 +293,6 @@ rule create_warps_dentate:
),
labelmap=get_labels_for_laplace,
params:
interp_method="linear",
gm_labels=lambda wildcards: config["laplace_labels"]["PD"]["sink"],
epsilon=lambda wildcards: config["unfold_crop_epsilon_fractions"],
resources:
Expand Down
118 changes: 47 additions & 71 deletions hippunfold/workflow/scripts/create_warps.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import nibabel as nib
import numpy as np
from scipy.interpolate import griddata
from scipy.interpolate import NearestNDInterpolator
import naturalneighbor
from scipy.stats import zscore

logfile = open(snakemake.log[0], "w")
print(f"Start", file=logfile, flush=True)
Expand All @@ -25,9 +25,6 @@ def summary(name, array):
return


# params:
interp_method = snakemake.params.interp_method

# load unfolded coordinate map
# unfold_ref_nib = nib.load(snakemake.input.unfold_ref_nii)
unfold_phys_coords_nib = nib.load(snakemake.input.unfold_phys_coords_nii)
Expand Down Expand Up @@ -66,7 +63,7 @@ def summary(name, array):
# the unfolded space, using scipy's griddata (equivalent to matlab scatteredInterpolant).


coord_flat_ap = coord_ap[mask == True] # matlab: Laplace_AP = coord_ap(mask==1);
coord_flat_ap = coord_ap[mask == True]
coord_flat_pd = coord_pd[mask == True]
coord_flat_io = coord_io[mask == True]

Expand All @@ -75,15 +72,11 @@ def summary(name, array):
summary("coord_flat_io", coord_flat_io)

# unravel indices of mask voxels into subscripts...
(i_L, j_L, k_L) = np.unravel_index(
idxgm, sz
) # matlab: [i_L,j_L,k_L]=ind2sub(sz,idxgm);
(i_L, j_L, k_L) = np.unravel_index(idxgm, sz)
summary("i_L", i_L)

# ... and stack into vectors ...
native_coords_mat = np.vstack(
(i_L, j_L, k_L, np.ones(i_L.shape))
) # matlab: native_coords_mat = [i_L-1, j_L-1, k_L-1,ones(size(i_L))]';
native_coords_mat = np.vstack((i_L, j_L, k_L, np.ones(i_L.shape)))
summary("native_coords_mat", native_coords_mat)


Expand All @@ -104,74 +97,63 @@ def summary(name, array):

# scattered interpolation / griddata:

# matlab: interp_X = scatteredInterpolant(Laplace_AP,Laplace_PD,Laplace_IO,native_coords_phys(:,1),interp,extrap);

# we have points defined by coord_flat_{ap,pd,io}, and corresponding value as native_coords_phys[:,i]
# and we want to interpolate on a grid in the unfolded space

# add some noise to avoid perfectly overlapping datapoints!
points = (
coord_flat_ap + (np.random.rand(coord_flat_ap.shape[0]) - 0.5) * 1e-6,
coord_flat_pd + (np.random.rand(coord_flat_ap.shape[0]) - 0.5) * 1e-6,
coord_flat_io + (np.random.rand(coord_flat_ap.shape[0]) - 0.5) * 1e-6,
)
# unnormalize and add a bit of noise so points don't ever perfectly overlap
jordandekraker marked this conversation as resolved.
Show resolved Hide resolved
coord_flat_ap_unnorm = coord_flat_ap * unfold_dims[0]
coord_flat_pd_unnorm = coord_flat_pd * unfold_dims[1]
coord_flat_io_unnorm = coord_flat_io * unfold_dims[2]

# get unfolded grid (from 0 to 1, not world coords), using meshgrid:
# note: indexing='ij' to swap the ordering of x and y
epsilon = snakemake.params.epsilon
(unfold_gx, unfold_gy, unfold_gz) = np.meshgrid(
np.linspace(0 + float(epsilon[0]), 1 - float(epsilon[0]), unfold_dims[0]),
np.linspace(0 + float(epsilon[1]), 1 - float(epsilon[1]), unfold_dims[1]),
np.linspace(0 + float(epsilon[2]), 1 - float(epsilon[2]), unfold_dims[2]),
np.linspace(
0 + float(epsilon[0]), unfold_dims[0] - float(epsilon[0]), unfold_dims[0]
),
np.linspace(
0 + float(epsilon[1]), unfold_dims[1] - float(epsilon[1]), unfold_dims[1]
),
np.linspace(
0 + float(epsilon[2]), unfold_dims[2] - float(epsilon[2]), unfold_dims[2]
),
indexing="ij",
)

# tuple for use in griddata:
unfold_xi = (unfold_gx, unfold_gy, unfold_gz)
summary("unfold_gx", unfold_gx)
summary("unfold_gy", unfold_gy)
summary("unfold_gz", unfold_gz)

# perform the interpolation, filling in outside values as 0
# TODO: linear vs cubic? we were using "natural" interpolation in matlab
# so far, linear seems close enough..
interp_ap = griddata(
points, values=native_coords_phys[:, 0], xi=unfold_xi, method=interp_method
)
summary("interp_ap", interp_ap)
interp_pd = griddata(
points, values=native_coords_phys[:, 1], xi=unfold_xi, method=interp_method
)
summary("interp_pd", interp_pd)
interp_io = griddata(
points, values=native_coords_phys[:, 2], xi=unfold_xi, method=interp_method
# perform the interpolation

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

actually looks like noise is added here - so just need to move the comment

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actually, unfolded_gx unfolded_gy unfolded_gz were no longer used, so I removed them. This also means that epsilon is no longer used, and i believe its no longer needed

points = np.stack(
[
coord_flat_ap * unfold_dims[0]
+ (np.random.rand(coord_flat_ap.shape[0]) - 0.5) * 1e-6,
coord_flat_pd * unfold_dims[1]
+ (np.random.rand(coord_flat_ap.shape[0]) - 0.5) * 1e-6,
coord_flat_io * unfold_dims[2]
+ (np.random.rand(coord_flat_ap.shape[0]) - 0.5) * 1e-6,
],
axis=1,
)
summary("interp_io", interp_ap)

# fill NaNs (NN interpolater allows for extrapolation!)
[x, y, z] = np.where(np.invert(np.isnan(interp_ap)))
interp = NearestNDInterpolator(
np.c_[x, y, z], interp_ap[np.invert(np.isnan(interp_ap))]
interp_ap = naturalneighbor.griddata(
points,
native_coords_phys[:, 0],
[[0, unfold_dims[0], 1], [0, unfold_dims[1], 1], [0, unfold_dims[2], 1]],
)
[qx, qy, qz] = np.where(np.isnan(interp_ap))
fill = interp(qx, qy, qz)
interp_ap[np.isnan(interp_ap)] = fill

[x, y, z] = np.where(np.invert(np.isnan(interp_pd)))
interp = NearestNDInterpolator(
np.c_[x, y, z], interp_pd[np.invert(np.isnan(interp_pd))]
interp_pd = naturalneighbor.griddata(
points,
native_coords_phys[:, 1],
[[0, unfold_dims[0], 1], [0, unfold_dims[1], 1], [0, unfold_dims[2], 1]],
)
[qx, qy, qz] = np.where(np.isnan(interp_pd))
fill = interp(qx, qy, qz)
interp_pd[np.isnan(interp_pd)] = fill

[x, y, z] = np.where(np.invert(np.isnan(interp_io)))
interp = NearestNDInterpolator(
np.c_[x, y, z], interp_io[np.invert(np.isnan(interp_io))]
interp_io = naturalneighbor.griddata(
points,
native_coords_phys[:, 2],
[[0, unfold_dims[0], 1], [0, unfold_dims[1], 1], [0, unfold_dims[2], 1]],
)
[qx, qy, qz] = np.where(np.isnan(interp_io))
fill = interp(qx, qy, qz)
interp_io[np.isnan(interp_io)] = fill


# prepare maps for writing as warp file:

Expand All @@ -180,10 +162,11 @@ def summary(name, array):
mapToNative[:, :, :, 0, 0] = interp_ap
mapToNative[:, :, :, 0, 1] = interp_pd
mapToNative[:, :, :, 0, 2] = interp_io
# TODO: interpolate nans more better
mapToNative[np.isnan(mapToNative)] = 0
summary("mapToNative", mapToNative)

mapToNative[np.isnan(mapToNative)] = 0


# mapToNative has the absolute coordinates, but we want them relative to the
# unfolded grid, so we subtract it out:
displacementToNative = mapToNative - unfold_grid_phys
Expand Down Expand Up @@ -219,13 +202,6 @@ def summary(name, array):
# The image affine from the unfolded grid takes points from 0 to N to world coords, so
# just need to un-normalize, then multiply by affine

# unnormalize
coord_flat_ap_unnorm = coord_flat_ap * unfold_dims[0]
coord_flat_pd_unnorm = coord_flat_pd * unfold_dims[1]
coord_flat_io_unnorm = coord_flat_io * unfold_dims[2]

summary("coord_flat_ap_unnorm", coord_flat_ap_unnorm)


# reshape for multiplication (affine * vec)
coord_flat_unnorm_vec = np.stack(
Expand All @@ -250,7 +226,7 @@ def summary(name, array):
summary("uvw_phys", uvw_phys)

# now we have the absolute unfold world coords for each native grid point
# but we need the displacement from the native grid point world coord
# but we need the displacement from the native grid point world coord

# the native world coords are in native_coords_phys
# so we subtract it
Expand Down
Loading