Skip to content

Commit

Permalink
Improve error handling, display and configurability of eval script
Browse files Browse the repository at this point in the history
- Default to evaluation decision of None when either agent or
  evaluator llm fails. This fixes accuracy calculations on errors
- Fix showing color for decision True
- Enable arg flags to specify output results file paths
  • Loading branch information
debanjum committed Nov 13, 2024
1 parent 15b0cfa commit f4e3720
Showing 1 changed file with 64 additions and 34 deletions.
98 changes: 64 additions & 34 deletions tests/eval_frames.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,20 @@
import argparse
import concurrent.futures
import json
import logging
import os
import time
from datetime import datetime
from typing import Any, Dict

import pandas as pd
import requests
from datasets import load_dataset

from khoj.utils.helpers import timer
from khoj.utils.helpers import is_none_or_empty, timer

# Configure root logger
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
logging.basicConfig(level=logging.INFO, format="%(message)s")
logger = logging.getLogger(__name__)

# Configuration
Expand Down Expand Up @@ -82,23 +84,28 @@ def evaluate_response(query: str, agent_response: str, ground_truth: str) -> Dic
try:
response = requests.post(
GEMINI_API_URL,
headers={"Content-Type": "application/json", "response_mime_type": "application/json"},
json={"contents": [{"parts": [{"text": evaluation_prompt}]}]},
headers={"Content-Type": "application/json"},
json={
"contents": [{"parts": [{"text": evaluation_prompt}]}],
"generationConfig": {"response_mime_type": "application/json"},
},
)
response.raise_for_status()

# Parse evaluation response
eval_response = json.loads(clean_json(response.json()["candidates"][0]["content"]["parts"][0]["text"]))
if "decision" in eval_response and isinstance(eval_response["decision"], str):
eval_response["decision"] = eval_response["decision"].upper() == "TRUE"
eval_response: dict[str, str] = json.loads(
clean_json(response.json()["candidates"][0]["content"]["parts"][0]["text"])
)
decision = str(eval_response.get("decision", "")).upper() == "TRUE"
explanation = eval_response.get("explanation", "")
# Handle evaluation service errors
if "503 Service Error" in explanation:
decision = None
# Extract decision and explanation from structured response
return {
"decision": eval_response.get("decision", False),
"explanation": eval_response.get("explanation", ""),
}
return decision, explanation
except Exception as e:
logger.error(f"Error in evaluation: {e}")
return {"decision": "FALSE", "explanation": f"Evaluation failed: {str(e)}"}
return None, f"Evaluation failed: {str(e)}"


def process_batch(batch, batch_start, results, dataset_length):
Expand All @@ -107,17 +114,17 @@ def process_batch(batch, batch_start, results, dataset_length):
logger.info(f"Processing example: {current_index}/{dataset_length}")

# Trigger research mode if enabled
prompt = f"/{KHOJ_MODE} {prompt}" if KHOJ_MODE else prompt
prompt = f"/{KHOJ_MODE} {prompt}" if KHOJ_MODE and not prompt.startswith(f"/{KHOJ_MODE}") else prompt

# Get agent response
agent_response = get_agent_response(prompt)

# Evaluate response
if agent_response is None or agent_response.strip() == "":
evaluation["decision"] = False
evaluation["explanation"] = "Agent response is empty. This maybe due to a service error."
if is_none_or_empty(agent_response):
decision = None
explanation = "Agent response is empty. This maybe due to a service error."
else:
evaluation = evaluate_response(prompt, agent_response, answer)
decision, explanation = evaluate_response(prompt, agent_response, answer)

# Store results
results.append(
Expand All @@ -126,25 +133,29 @@ def process_batch(batch, batch_start, results, dataset_length):
"prompt": prompt,
"ground_truth": answer,
"agent_response": agent_response,
"evaluation_decision": evaluation["decision"],
"evaluation_explanation": evaluation["explanation"],
"evaluation_decision": decision,
"evaluation_explanation": explanation,
"reasoning_type": reasoning_type,
}
)

# Color the decision based on its value
decision = evaluation["decision"]
decision_color = "green" if decision == True else "red"
# Log results
decision_color = {True: "green", None: "blue", False: "red"}[decision]
colored_decision = color_text(str(decision), decision_color)
logger.info(
f'Decision: {colored_decision}\nQuestion: {prompt}\nExpected Answer: {answer}\nAgent Answer: {agent_response}\nExplanation: {evaluation["explanation"]}\n'
f"Decision: {colored_decision}\nQuestion: {prompt}\nExpected Answer: {answer}\nAgent Answer: {agent_response}\nExplanation: {explanation}\n"
)

time.sleep(SLEEP_SECONDS) # Rate limiting


def color_text(text, color):
colors = {"red": "\033[91m", "green": "\033[92m", "reset": "\033[0m"}
colors = {
"red": "\033[91m", # Bright red
"green": "\033[32m", # Standard green
"blue": "\033[94m", # Bright blue
"reset": "\033[0m",
}
return f"{colors[color]}{text}{colors['reset']}"


Expand All @@ -153,15 +164,28 @@ def clean_json(response: str):
return response.strip().replace("\n", "").removeprefix("```json").removesuffix("```")


def parse_args():
parser = argparse.ArgumentParser(description="Evaluate Khoj on the Google FRAMES benchmark.")
parser.add_argument(
"--output",
"-o",
default=None,
help="Path to store evaluation results CSV (default: frames_evaluation_results_[datetime].csv)",
)
return parser.parse_args()


def main():
# Initialize variables
args = parse_args()

# Load dataset
with timer("Loaded dataset in", logger):
dataset = load_frames_dataset()
if dataset is None:
return

# Initialize variables
counter = 0
results = []
dataset_length = len(dataset["Prompt"])

Expand All @@ -182,31 +206,37 @@ def main():

# Calculate metrics
df = pd.DataFrame(results)
accuracy = (df["evaluation_decision"] == True).mean()
eval_df = df.dropna(subset=["evaluation_decision"]) # Exclude rows with missing evaluation decision
accuracy = (eval_df["evaluation_decision"] == True).mean()

# Calculate accuracy by reasoning type
reasoning_type_accuracy = df.groupby("reasoning_type")["evaluation_decision"].apply(lambda x: (x == True).mean())

# Save results
df.to_csv("frames_evaluation_results.csv", index=False)
reasoning_type_accuracy = eval_df.groupby("reasoning_type")["evaluation_decision"].apply(
lambda x: (x == True).mean()
)

# Print summary
logger.info(f"\nOverall Accuracy: {accuracy:.2%}")
logger.info("\nAccuracy by Reasoning Type:")
logger.info(reasoning_type_accuracy)
logger.info(f"\nAccuracy by Reasoning Type:\n{reasoning_type_accuracy}")

# Save results
output_file = args.output or f"frames_evaluation_results_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.csv"
df.to_csv(output_file, index=False)
logger.info(f"Results saved to {output_file}")


if __name__ == "__main__":
"""
Evaluate Khoj on the Google FRAMES benchmark.
Response are evaluated by GEMINI_EVAL_MODEL (default: gemini-pro-1.5-002).
Khoj should be running at KHOJ_URL, default at http://localhost:42110.
Khoj should be running at KHOJ_URL (default: http://localhost:42110).
The Gemini judge model is accessed via the Gemini API with your GEMINI_API_KEY.
To evaluate Khoj in research mode, set the KHOJ_MODE environment variable to "research".
Run the script using the following command:
KHOJ_MODE="research" GEMINI_API_KEY="<your_gemini_api_key>" python eval_frames.py
"""
with timer("Ran eval in", logger):
logger.info(f"{datetime.now()} - Begin Quizzing Khoj on the FRAMES benchmark.")
with timer("Ran eval script in", logger, log_level=logging.INFO):
main()
logger.info(f"{datetime.now()} - End Quizzing Khoj on the FRAMES benchmark.")

0 comments on commit f4e3720

Please sign in to comment.