notebooks | inference | autodistill | maestro
We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! π€
Pip install the superverse package in a Python>=3.8 environment.
pip install superverse
Read more about conda, mamba, and installing from source in our guide.
Superverse was designed to be model agnostic. Just plug in any classification, detection, or segmentation model. For your convenience, we have created connectors for the most popular libraries like Ultralytics, Transformers, or MMDetection.
import cv2
import superverse as sv
from ultralytics import YOLO
image = cv2.imread(...)
model = YOLO("yolov8s.pt")
result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)
len(detections)
# 5
π more model connectors
-
inference
import cv2 import superverse as sv from inference import get_model image = cv2.imread(...) model = get_model(model_id="yolov8s-640", api_key=<KHULNASOFT API KEY>) result = model.infer(image)[0] detections = sv.Detections.from_inference(result) len(detections) # 5
import cv2
import superverse as sv
image = cv2.imread(...)
detections = sv.Detections(...)
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(
scene=image.copy(),
detections=detections)
import superverse as sv
from khulnasoft import Khulnasoft
project = Khulnasoft().workspace(<WORKSPACE_ID>).project(<PROJECT_ID>)
dataset = project.version(<PROJECT_VERSION>).download("coco")
ds = sv.DetectionDataset.from_coco(
images_directory_path=f"{dataset.location}/train",
annotations_path=f"{dataset.location}/train/_annotations.coco.json",
)
path, image, annotation = ds[0]
# loads image on demand
for path, image, annotation in ds:
# loads image on demand
π more dataset utils
-
load
dataset = sv.DetectionDataset.from_yolo( images_directory_path=..., annotations_directory_path=..., data_yaml_path=... ) dataset = sv.DetectionDataset.from_pascal_voc( images_directory_path=..., annotations_directory_path=... ) dataset = sv.DetectionDataset.from_coco( images_directory_path=..., annotations_path=... )
-
split
train_dataset, test_dataset = dataset.split(split_ratio=0.7) test_dataset, valid_dataset = test_dataset.split(split_ratio=0.5) len(train_dataset), len(test_dataset), len(valid_dataset) # (700, 150, 150)
-
merge
ds_1 = sv.DetectionDataset(...) len(ds_1) # 100 ds_1.classes # ['dog', 'person'] ds_2 = sv.DetectionDataset(...) len(ds_2) # 200 ds_2.classes # ['cat'] ds_merged = sv.DetectionDataset.merge([ds_1, ds_2]) len(ds_merged) # 300 ds_merged.classes # ['cat', 'dog', 'person']
-
save
dataset.as_yolo( images_directory_path=..., annotations_directory_path=..., data_yaml_path=... ) dataset.as_pascal_voc( images_directory_path=..., annotations_directory_path=... ) dataset.as_coco( images_directory_path=..., annotations_path=... )
-
convert
sv.DetectionDataset.from_yolo( images_directory_path=..., annotations_directory_path=..., data_yaml_path=... ).as_pascal_voc( images_directory_path=..., annotations_directory_path=... )
Visit our documentation page to learn how superverse can help you build computer vision applications faster and more reliably.
We love your input! Please see our contributing guide to get started. Thank you π to all our contributors!