-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweights.py
66 lines (54 loc) · 2.13 KB
/
weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import struct
class WeightReader:
def __init__(self, weight_file):
with open(weight_file, 'rb') as w_f:
major, = struct.unpack('i', w_f.read(4))
minor, = struct.unpack('i', w_f.read(4))
_, = struct.unpack('i', w_f.read(4))
if (major*10 + minor) >= 2 and major < 1000 and minor < 1000:
w_f.read(8)
else:
w_f.read(4)
binary = w_f.read()
self.offset = 0
self.all_weights = np.frombuffer(binary, dtype='float32')
def load_weights(self, model, skip_detect_layer=False):
# 81 93 105
for i in range(model.num_layers):
if skip_detect_layer and i in [81, 93, 105]:
skip_size = self._skip(i)
self._read_bytes(skip_size)
continue
suffixes = ["beta", "gamma", "moving_mean", "moving_variance", "bias"]
for suffix in suffixes:
variables = model.get_variables(layer_idx=i, suffix=suffix)
if variables:
self._load_1d_var(variables[0])
variables = model.get_variables(layer_idx=i, suffix="kernel")
if variables:
self._load_4d_var(variables[0])
print(self.offset) # 62001757
def _skip(self, i):
if i == 81:
skip_size = 255 + 1024*255
elif i == 93:
skip_size = 255 + 512*255
elif i == 105:
skip_size = 255 + 256*255
else:
skip_size = 0
return skip_size
def _read_bytes(self, size):
self.offset = self.offset + size
return self.all_weights[self.offset-size:self.offset]
def _load_1d_var(self, variable):
size = np.prod(variable.shape)
value = self._read_bytes(size) # bias
variable.assign(value)
def _load_4d_var(self, variable):
size = np.prod(variable.shape)
value = self._read_bytes(size) # scale
value = value.reshape(list(reversed(variable.shape)))
value = value.transpose([2,3,1,0])
variable.assign(value)