Human visual system depends on imagery representations in addition to the visual input to build a concrete holistic picture of the object of interest. These representations are correlated and shared in the human brain and help provide a crisp understanding of the environment. In this work, we study if a similar correlation exists in Artificial Neural Networks (ANNs) and if the correlation is strong enough to use the corresponding fMRI data of both perceptual and quasi-perceptual experiences interchangeably for downstream tasks such as object category prediction.
-
Notifications
You must be signed in to change notification settings - Fork 1
kjanjua26/interpreting-fMRI-signals
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
This is the course project for CMPUT 652: Machine Learning and Brain grad. course taught at UofAlberta in Fall 2021.
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published