Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

use quickSort from sort.Sort #207

Merged
merged 6 commits into from
Jan 16, 2020
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 4 additions & 38 deletions flate/huffman_code.go
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@ package flate
import (
"math"
"math/bits"
"sort"
)

const (
Expand All @@ -25,8 +24,8 @@ type huffmanEncoder struct {
codes []hcode
freqcache []literalNode
bitCount [17]int32
lns byLiteral // stored to avoid repeated allocation in generate
lfs byFreq // stored to avoid repeated allocation in generate
//lns byLiteral // stored to avoid repeated allocation in generate
klauspost marked this conversation as resolved.
Show resolved Hide resolved
//lfs byFreq // stored to avoid repeated allocation in generate
}

type literalNode struct {
Expand Down Expand Up @@ -270,7 +269,7 @@ func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalN
// assigned in literal order (not frequency order).
chunk := list[len(list)-int(bits):]

h.lns.sort(chunk)
sortByLiteral(chunk)
for _, node := range chunk {
h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
code++
Expand Down Expand Up @@ -315,47 +314,14 @@ func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
}
return
}
h.lfs.sort(list)
sortByFreq(list)

// Get the number of literals for each bit count
bitCount := h.bitCounts(list, maxBits)
// And do the assignment
h.assignEncodingAndSize(bitCount, list)
}

type byLiteral []literalNode

func (s *byLiteral) sort(a []literalNode) {
*s = byLiteral(a)
sort.Sort(s)
}

func (s byLiteral) Len() int { return len(s) }

func (s byLiteral) Less(i, j int) bool {
return s[i].literal < s[j].literal
}

func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }

type byFreq []literalNode

func (s *byFreq) sort(a []literalNode) {
*s = byFreq(a)
sort.Sort(s)
}

func (s byFreq) Len() int { return len(s) }

func (s byFreq) Less(i, j int) bool {
if s[i].freq == s[j].freq {
return s[i].literal < s[j].literal
}
return s[i].freq < s[j].freq
}

func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }

// histogramSize accumulates a histogram of b in h.
// An estimated size in bits is returned.
// Unassigned values are assigned '1' in the histogram.
Expand Down
178 changes: 178 additions & 0 deletions flate/huffman_sortByFreq.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package flate

// Sort sorts data.
// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
// data.Less and data.Swap. The sort is not guaranteed to be stable.
func sortByFreq(data []literalNode) {
n := len(data)
quickSortByFreq(data, 0, n, maxDepth(n))
}

func quickSortByFreq(data []literalNode, a, b, maxDepth int) {
for b-a > 12 { // Use ShellSort for slices <= 12 elements
if maxDepth == 0 {
heapSort(data, a, b)
return
}
maxDepth--
mlo, mhi := doPivotByFreq(data, a, b)
// Avoiding recursion on the larger subproblem guarantees
// a stack depth of at most lg(b-a).
if mlo-a < b-mhi {
quickSortByFreq(data, a, mlo, maxDepth)
a = mhi // i.e., quickSortByFreq(data, mhi, b)
} else {
quickSortByFreq(data, mhi, b, maxDepth)
b = mlo // i.e., quickSortByFreq(data, a, mlo)
}
}
if b-a > 1 {
// Do ShellSort pass with gap 6
// It could be written in this simplified form cause b-a <= 12
for i := a + 6; i < b; i++ {
if data[i].freq == data[i-6].freq && data[i].literal < data[i-6].literal || data[i].freq < data[i-6].freq {
data[i], data[i-6] = data[i-6], data[i]
}
}
insertionSortByFreq(data, a, b)
}
}

// siftDownByFreq implements the heap property on data[lo, hi).
// first is an offset into the array where the root of the heap lies.
func siftDownByFreq(data []literalNode, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && (data[first+child].freq == data[first+child+1].freq && data[first+child].literal < data[first+child+1].literal || data[first+child].freq < data[first+child+1].freq) {
child++
}
if data[first+root].freq == data[first+child].freq && data[first+root].literal > data[first+child].literal || data[first+root].freq > data[first+child].freq {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
root = child
}
}
func doPivotByFreq(data []literalNode, lo, hi int) (midlo, midhi int) {
m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
if hi-lo > 40 {
// Tukey's ``Ninther,'' median of three medians of three.
s := (hi - lo) / 8
medianOfThreeSortByFreq(data, lo, lo+s, lo+2*s)
medianOfThreeSortByFreq(data, m, m-s, m+s)
medianOfThreeSortByFreq(data, hi-1, hi-1-s, hi-1-2*s)
}
medianOfThreeSortByFreq(data, lo, m, hi-1)

// Invariants are:
// data[lo] = pivot (set up by ChoosePivot)
// data[lo < i < a] < pivot
// data[a <= i < b] <= pivot
// data[b <= i < c] unexamined
// data[c <= i < hi-1] > pivot
// data[hi-1] >= pivot
pivot := lo
a, c := lo+1, hi-1

for ; a < c && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ {
}
b := a
for {
for ; b < c && (data[pivot].freq == data[b].freq && data[pivot].literal > data[b].literal || data[pivot].freq > data[b].freq); b++ { // data[b] <= pivot
}
for ; b < c && (data[pivot].freq == data[c-1].freq && data[pivot].literal < data[c-1].literal || data[pivot].freq < data[c-1].freq); c-- { // data[c-1] > pivot
}
if b >= c {
break
}
// data[b] > pivot; data[c-1] <= pivot
data[b], data[c-1] = data[c-1], data[b]
b++
c--
}
// If hi-c<3 then there are duplicates (by property of median of nine).
// Let's be a bit more conservative, and set border to 5.
protect := hi-c < 5
if !protect && hi-c < (hi-lo)/4 {
// Lets test some points for equality to pivot
dups := 0
if data[pivot].freq == data[hi-1].freq && data[pivot].literal > data[hi-1].literal || data[pivot].freq > data[hi-1].freq { // data[hi-1] = pivot
data[c], data[hi-1] = data[hi-1], data[c]
c++
dups++
}
if data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq { // data[b-1] = pivot
b--
dups++
}
// m-lo = (hi-lo)/2 > 6
// b-lo > (hi-lo)*3/4-1 > 8
// ==> m < b ==> data[m] <= pivot
if data[m].freq == data[pivot].freq && data[m].literal > data[pivot].literal || data[m].freq > data[pivot].freq { // data[m] = pivot
data[m], data[b-1] = data[b-1], data[m]
b--
dups++
}
// if at least 2 points are equal to pivot, assume skewed distribution
protect = dups > 1
}
if protect {
// Protect against a lot of duplicates
// Add invariant:
// data[a <= i < b] unexamined
// data[b <= i < c] = pivot
for {
for ; a < b && (data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq); b-- { // data[b] == pivot
}
for ; a < b && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ { // data[a] < pivot
}
if a >= b {
break
}
// data[a] == pivot; data[b-1] < pivot
data[a], data[b-1] = data[b-1], data[a]
a++
b--
}
}
// Swap pivot into middle
data[pivot], data[b-1] = data[b-1], data[pivot]
return b - 1, c
}

// Insertion sort
func insertionSortByFreq(data []literalNode, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && (data[j].freq == data[j-1].freq && data[j].literal < data[j-1].literal || data[j].freq < data[j-1].freq); j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}

// quickSortByFreq, loosely following Bentley and McIlroy,
// ``Engineering a Sort Function,'' SP&E November 1993.

// medianOfThreeSortByFreq moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
func medianOfThreeSortByFreq(data []literalNode, m1, m0, m2 int) {
// sort 3 elements
if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq {
data[m1], data[m0] = data[m0], data[m1]
}
// data[m0] <= data[m1]
if data[m2].freq == data[m1].freq && data[m2].literal < data[m1].literal || data[m2].freq < data[m1].freq {
data[m2], data[m1] = data[m1], data[m2]
// data[m0] <= data[m2] && data[m1] < data[m2]
if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq {
data[m1], data[m0] = data[m0], data[m1]
}
}
// now data[m0] <= data[m1] <= data[m2]
}
Loading