Skip to content

Commit

Permalink
Add proof-cong.md
Browse files Browse the repository at this point in the history
  • Loading branch information
koba-e964 committed Oct 18, 2023
1 parent ec49cd9 commit f2d536c
Show file tree
Hide file tree
Showing 3 changed files with 33 additions and 6 deletions.
2 changes: 1 addition & 1 deletion math/SquareFibonacci/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ $m \equiv 3 \pmod 4$ なる正の有理整数 m 、および m と互いに素
- (cong-F) $2 | k$ のとき、$F_{n+2k} \equiv -F_n \pmod{L_k}$
- [[Cohn]] の (12)

証明: TODO
[証明](proof-cong.md)

#### 周期性

Expand Down
28 changes: 28 additions & 0 deletions math/SquareFibonacci/proof-cong.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
### (cong-L)
- (cong-L) $2 | k$ のとき、$L_{n+2k} \equiv -L_n \pmod{L_k}$

証明

$L_k | L_{n+2k} + L_n$ が言えれば良い。
$k$ が偶数であり $L_k = \phi^k + \overline\phi^k = \phi^k + \phi^{-k} = \overline\phi^k + \overline\phi^{-k}$ が成立することに注意すると、

$$\begin{align*}
L_{n+2k} + L_n &= \phi^{n+2k} + \overline\phi^{n+2k} + \phi^n + \overline\phi^n \\\\
&= \phi^{n+2k} + \phi^n + \overline\phi^{n+2k} + \overline\phi^n \\\\&= (\phi^k+\phi^{-k})\phi^{n+k} + (\overline\phi^k+\overline\phi^{-k})\overline\phi^{n+k} \\\\
&= (\phi^k+\phi^{-k})(\phi^{n+k} + \overline\phi^{n+k}) \\\\
&= L_kL_{n+k}
\end{align*}$$

### (cong-F)
- (cong-F) $2 | k$ のとき、$F_{n+2k} \equiv -F_n \pmod{L_k}$

証明

上と同様である。ただし $\sqrt{5}$ が分母に来ているのでそこの処理が面倒。

$$\begin{align*}
F_{n+2k} + F_n &= \frac{\phi^{n+2k} - \overline\phi^{n+2k} + \phi^n - \overline\phi^n}{\sqrt{5}} \\\\
&= \frac{\phi^{n+2k} + \phi^n - \overline\phi^{n+2k} - \overline\phi^n}{\sqrt{5}} \\\\
&= \frac{(\phi^k+\phi^{-k})(\phi^{n+k} - \overline\phi^{n+k})}{\sqrt{5}} \\\\
&= L_k F_{n+k}
\end{align*}$$
9 changes: 4 additions & 5 deletions math/SquareFibonacci/proof-factor.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# 証明
### (F-even)
- $F_{2m} = F_mL_m$
- (F-even): $F_{2m} = F_mL_m$

式変形をすれば明らか。
$$\begin{align*}
Expand All @@ -9,10 +9,9 @@ F_{2m} &= (\phi^{2m}-\overline\phi^{2m})/\sqrt{5}\\\\
&= L_mF_m
\end{align*}$$

### (gcd-3)
- $\mathrm{gcd}(F_{3m}, L_{3m}) = 2$
### (gcd-not-3)
- $3 \not| n$ のとき、 $\mathrm{gcd}(F_{n}, L_{n}) = 1$
### (gcd-3), (gcd-not-3)
- (gcd-3): $\mathrm{gcd}(F_{3m}, L_{3m}) = 2$
- (gcd-not-3): $3 \not| n$ のとき、 $\mathrm{gcd}(F_{n}, L_{n}) = 1$

似たような命題なので同時に証明する。

Expand Down

0 comments on commit f2d536c

Please sign in to comment.