JADE++ is a high performance C++ implementation of adaptive differential evolution optimization algorithm JADE from Jingqiao Zhang and Arthur C. Sanderson book 'Adaptive Differential Evolution. A Robust Approach to Multimodal Problem Optimization' Springer, 2009. JADE++ is designed to run efficiently in parallel on multicore processors, multiprocessor systems, clusters and supercomputers with help of MPI. JADE++ has also an option to switch on the impoved cross-section rate PMCRADE (after Li et al. in the paper "Power Mean Based Crossover Rate Adaptive Differential Evolution"). The source code is licened under GPL v3+.
JADE++ needs MPI and Cmake installed to compile and run. It also needs C++11 compatible complier.
Feel free to contact me with questions about JADE++ via e-mail k.ladutenko@metalab.ifmo.ru!
For Debian/Ubuntu systems single line install with
# apt-get install openmpi-bin openmpi-doc libopenmpi-dev cmake
and to use LLVM Clang as a compiler
# apt-get install clang libc++-dev
Use jade.cc and jade.h as a C++ library directly or add this repository with CMake add_subdirectory() and target_link_libraries() with JADEXX::JADEXX target.
Checkout with the released version, used in papers below!
The optimaizer was used to obtain results in the following papers:
-
"Reduction of scattering using thin all-dielectric shells designed by stochastic optimizer" Konstantin Ladutenko, Ovidio Peña-Rodríguez, Irina Melchakova, Ilya Yagupov, and Pavel Belov J. Appl. Phys., vol. 116, pp. 184508, 2014 http://dx.doi.org/10.1063/1.4900529
-
"Superabsorption of light by nanoparticles" Konstantin Ladutenko, Pavel Belov, Ovidio Peña-Rodríguez, Ali Mirzaei, Andrey E. Miroshnichenko and Ilya V. Shadrivov Nanoscale, 2015,7, 18897-18901 http://dx.doi.org/10.1039/C5NR05468K
Edit go.sh to run JADE++ on your number of processes.
./go.sh single
normaly should compile JADE++ and run a single test with Rosenbrock function (f5). On success it will finish with (almost) zero mean value of global minima positioned at (1.0, 1.0, ..., 1.0) coordinate. https://en.wikipedia.org/wiki/Rosenbrock_function All individuals (candidate solutions) are shown as evaluated.
The souce code of this test can be used as a Hello world
example
with JADE++, you can find it in file test-jade-single-function.cc
./go.sh test
to run optimization of all standard test functions (in 30D and 100D cases), will last much longer. Example value of final best fitness function found - mean value (and stddev). Ideal value is to be zero and JADE is usually very close to it. However, some functions (like f6 and f8) are really hard to opimize.
/// %brief Discontinuous step function
double f6(std::vector<double> x) {
double sum = 0;
for (auto x_i : x) sum += pow2(floor(x_i + 0.5));
return sum;
}
double f8(std::vector<double> x) {
double sum = 0;
for (auto x_i : x) sum += -x_i * sin(sqrt(std::abs(x_i)));
double D = static_cast<double>(x.size());
return sum + D*418.98288727243369;
}
Results from ./go.sh at revision, the mean value should be as small as possible (global maximum is exact zero) See test-jade.cc for more details.
With PMCRADE feature ON (by default):
dim 30, repeats 50
func, gen, mean, (sigma)
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13
1500 2000 5000 5000 3000 100 3000 1000 1000 500 500 500 500
5.7e-79 5.7e-52 4.1e-93 3.8e-34 1.6e-01 4.3e+00 5.4e-04 -8.0e-13 3.3e-06 7.4e-12 3.5e-04 1.1e-22 1.0e-21
(1.6e-78) (9.8e-52) (1.9e-92) (2.6e-33) (7.8e-01) (1.6e+00) (1.8e-04) (7.8e-12) (4.0e-06) (3.9e-12) (1.7e-03) (2.6e-22) (1.1e-21)
dim 100, repeats 50
func, gen, mean, (sigma)
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13
2000 3000 8000 15000 6000 100 6000 1000 3000 500 500 500 500
1.2e-71 6.5e-46 3.3e-38 2.6e-61 6.4e-01 9.2e+01 8.6e-04 8.8e+03 8.0e-02 1.8e-08 2.2e-14 1.9e-03 6.0e-15
(1.6e-71) (2.5e-45) (4.5e-38) (1.6e-60) (1.5e+00) (1.3e+01) (2.0e-04) (3.7e+02) (5.4e-02) (4.5e-09) (1.4e-14) (7.4e-03) (5.2e-15)
With PMCRADE feature OFF:
dim 30, repeats 50
func, gen, mean, (sigma)
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13
1500 2000 5000 5000 3000 100 3000 1000 1000 500 500 500 500
1.0e-57 2.8e-23 5.6e-93 8.1e-07 8.0e-02 7.3e+00 6.1e-04 2.4e+00 2.3e-04 4.2e-09 2.8e-13 4.6e-16 2.1e-15
(6.8e-57) (1.3e-22) (2.1e-92) (3.6e-07) (5.6e-01) (1.8e+00) (2.7e-04) (1.7e+01) (1.1e-04) (3.3e-09) (1.9e-12) (8.5e-16) (5.6e-15)
dim 100, repeats 50
func, gen, mean, (sigma)
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13
2000 3000 8000 15000 6000 100 6000 1000 3000 500 500 500 500
2.4e-66 1.7e-50 4.1e-38 2.4e-02 2.4e-01 1.5e+02 7.3e-04 8.6e+03 3.0e-01 4.6e-07 1.4e-11 1.4e-13 1.7e-11
(1.0e-65) (3.8e-50) (5.9e-38) (4.7e-03) (9.5e-01) (1.8e+01) (1.3e-04) (4.9e+02) (5.2e-02) (1.2e-07) (9.4e-12) (1.1e-13) (4.0e-11)