A simple, pure-Python easy-to-setup-and-use full-node (soon) for bitcoin and any [most] altcoins based on the original bitcoind.
- A full network node (soon)
- Single code base for multiple coins
- Downloads the entire blockchain
- Allow other peers to connect and download the blockchain
- Zero dependencies beyond standard Python installation (see scrypt performance below)
- 100% MIT/BSD licensed
- Full BIP38 encrypted address and wallet
- Separation of data directory and wallet
- bitcoin
- coinyecoin (dead?)
- dogecoin
- feathercoin
- flappycoin
- litecoin
- mooncoin (dead?)
- potcoin
- zetacoin
There are lots of things left to do. Expect the API to change frequently for now. Also, as each altcoin has slightly different and random "things" changed from the reference implementation, which means more functions will be added to the individual pycoind.coin
classes to accomodate a wider selection of altcoins.
- Full wallet API with Deterministic BIP32
- Wallet UI
- Checkpoints
- UTXO database (requires checkpoints)
- Become a fullnode; ie. support relaying (once checkpoints and UTXO databse is complete)
- Full legacy command line support
- Full legacy RPC support (use the original bitcoind rpc client with pycoind, or pycoind legacy_cli with the original bitcoind)
- Bloom filters
- Lots more coins (namecoin is highest on the list)
- X11 based coins
- Adaptive-N scrypt coins
- Python 3 support
- UI for sending transactions
- ipv6 has been "implemented" but is untested... I need to set up a ipv6 network to test on.
- more test cases (integrate all bitcoind test cases too)
A full node (should) verify all transactions before relaying them to peers. To verify transactions, each transaction input spends several unspent outputs (utxo), which must be verified. This requires storing a master database of all the UTXO's. While the database is implemented and seems to work, it is slow. Incredibly slow. So, first I wish to get checkpoints implemented, which will allow the UTXO database to populate much faster.
So, in short, the missing functionality is relay transactions to peers.
I was quite interested in all that makes bitcoin tick, but the C++ bitcoind source code was a bit intimidating, having not used C++ since university; even in my best days of C++, it was not my go-to language for learning a new algorithm or protocol.
Of course, I first installed bitcoind to whet my appetite (after settling macport's tantrums with boost)... Then litecoind... dogecoind... Lather, rinse, repeat.
It was more work than I thought necessary, tweaking Makefiles, building, setting up and managing a completely separate code bases for a dozen coins, that were nearly identical except for a handful bytes.
So, I finally started pycoind, to bring all my full nodes into a single cohesive (ish) code base.
Several useful scipts are included that demonstrate this library, and should suffice for most users' needs.
This tool allows you to perform common functions to addresses, such as:
- generate new private keys and addresses
- dump all information about a private or public key
- compress and decompress addresses' private keys and addresses
- encrypt and decrypt private keys
- generate printable BIP38 intermediate codes
- generate BIP38 EC-multiply printed private keys from an intermediate code and confirm their confirmation codes
- available in human readable or JSON output
- supports all available coins
In general, passing in a passphrase
or key
on the command line is not secure. Leaving it blank will provide a secure (non-echoing) prompt for you to enter your passphrase
or key
.
Care should also be taken when displaying unencrypted private keys (ie. --show-private
), as your terminal may have a scrollback buffer which would leave the keys visible long after using the utility. On OS X, alt-command-K
will clear your scrollback.
usage: pycoind-address [--coin COINNAME] [--generate | --key [KEY]]
[--compress | --decompress] [--decrypt [PASSWORD]]
[--encrypt [PASSWORD]] [--intermediate [PASSWORD]]
[--lot LOT] [--sequence SEQUENCE]
[--generate-printed INTERMEDIATE_CODE]
[--confirm CONFIRM_CODE [PASSWORD]] [-h] [-v]
[--show-private] [--json]
Address Manipulation Tool
Address Options:
--coin COINNAME specify coin (default: bitcoin)
--generate generate a new address
--key [KEY] hex public key or wif private key *
Compression:
--compress compress the key
--decompress decompress the key
Encryption:
--decrypt [PASSWORD] use passsphrase to decrypt key *
--encrypt [PASSWORD] use passphrase to encrypt key *
Printed Addresses:
--intermediate [PASSWORD]
generate an intermediate code for a passphrase *
--lot LOT set printed address lot number
--sequence SEQUENCE set printed address sequence number
--generate-printed INTERMEDIATE_CODE
generate a printed address
--confirm CONFIRM_CODE [PASSWORD]
confirm a printed address *
Output Formatting:
-h, --help show this help message and exit
-v, --version show program's version number and exit
--show-private show unencrypted private keys *
--json output in JSON
* Most terminals use a scrollback buffer, which can leave contents (such as
private keys and passphrases) visible long after using this utility. Make sure
you clear your scrollback and use the secure passphrase and key input when
possible, by omitting the passphrase or key from the command line.
Generate a compressed address:
/home/ricmoo> pycoind-address --generate --show-private
Address: 1AqGV68GPQVAZLtpRBkgRD5bC5V1xYavkD
Public Key: 03d24230984c42a2d733da5535abb6ac989ad709f0a231259207c5b90278983093
Compressed: True
Private Key: L3PizuKXn5r8SVxhgXx5L5jKUa1uxC67e6ekUYhFDP8Xy7NJTzFX
Generate a decompressed address:
/home/ricmoo> pycoind-address --generate --show-private --decompress
Address: 137BJruaWcvS5YLGvX8ptTK1jRXVewzGHr
Public Key: 046fe1b3d42a5d73e0bc53d5d559f18bfe0a49193d19fdb4f50fdc8dc7f15344a5141b3a45e68b1a5f0284a76ff8bd6c30df21cbad1fb82cadd19e240836197f67
Compressed: False
Private Key: 5KEBWFpYiZrb1sYZYTNvhHcVtfJ3nTA8XQzfb6SPVTmhfGBZ3Yi
Or, more securely, do not display the private key, instead encrypt it:
/home/ricmoo> pycoind-address --generate --encrypt
Passphrase: [typed foo]
Compressed: True
Private Key: 6PYKQkjEsozH4JHnV4GQYTsAr3nt2ZVq3djWmY1MhewD8aK2gmtdEMNfRx
Decompress an address:
/home/ricmoo> pycoind-address --key L1e4vSqvTfFhc4NNDXr5gm4MmtMgZSDLGoz6rwBGtBSNSbkFBSMW --show-private --decompress
Address: 1MCwNzTdFX3dTCXY6MzryR8XtmQkStmxzo
Public Key: 043fd52cf96f079ef4520f989f7f6273cde1f18992967a7a0d72ac156e8f2baf1879b7f9d48ff27b04ddc8ca5d954319f5bfde9023c1ba7f178c29a42bb23b1590
Compressed: False
Private Key: 5JpNHBqhCvyoMdZUv8tuGMQRC5PMk9RzqSbgqvWWt21JzwZBdZw
Compress an address:
/home/ricmoo> pycoind-address --key 5JpNHBqhCvyoMdZUv8tuGMQRC5PMk9RzqSbgqvWWt21JzwZBdZw --show-private --compress
Address: 1FhTqT8eFTk3uUoSKfevB7BKBTQdieMMVE
Public Key: 023fd52cf96f079ef4520f989f7f6273cde1f18992967a7a0d72ac156e8f2baf18
Compressed: True
Private Key: L1e4vSqvTfFhc4NNDXr5gm4MmtMgZSDLGoz6rwBGtBSNSbkFBSMW
/home/ricmoo> pycoind-address --key 6PYMn7XkUgLhAmARM4BeayeyfycbZAyv7Lpwjk6jsNpLZNc7oRwnqd49H9 --decrypt foo --encrypt bar
Compressed: True
Private Key: 6PYMn7XkTrBCRXEhwtnTEKGrHPRQiGdq4qS6tMMyAmfdZhcBCVmNVpnYf9
Or, Using secure input: (note that what you type will not be echoed to the terminal)
/home/ricmoo> pycoind-address --key --decrypt --encrypt
Key: [typed 6PYMn7XkUgLhAmARM4BeayeyfycbZAyv7Lpwjk6jsNpLZNc7oRwnqd49H9]
Passphrase: [typed foo]
Passphrase: [typed bar]
Compressed: True
Private Key: 6PYMn7XkTrBCRXEhwtnTEKGrHPRQiGdq4qS6tMMyAmfdZhcBCVmNVpnYf9
This tool starts a pycoind full node, which will connect to other nodes to synchronize and maintain a local copy of the blockchain.
/home/ricmoo> pycoind-node --help
usage: pycoind-node [--coin COINNAME] [--data-dir DIRECTORY] [--no-init]
[--background] [--bind ADDRESS] [--port PORT]
[--no-listen] [--max-peers COUNT] [--seek-peers COUNT]
[--connect ADDRESS[:PORT] [ADDRESS[:PORT] ...]]
[--no-dns-lookup] [--no-bootstrap] [-h] [--version]
[--debug]
Node Management Tool
Node Options:
--coin COINNAME specify coin (default: bitcoin)
--data-dir DIRECTORY database directory (default: ~/.pycoind/data)
--no-init do not create data-dir if missing
--background run the node in the background
Network:
--bind ADDRESS Use specific interface (default: 127.0.0.1)
--port PORT port to connect on (default: coin specific)
--no-listen do not accept incoming connections
Peer Discovery:
--max-peers COUNT maximum connections to allow (default: 125)
--seek-peers COUNT number of peers to seek out (default: 16)
--connect ADDRESS[:PORT] [ADDRESS[:PORT] ...]
specify peer addresses
--no-dns-lookup do not attempt to resolve DNS names for connect
--no-bootstrap do not use DNS seeds to bootstrap
Other Options:
-h, --help show this help message and exit
--version show program's version number and exit
--debug display debug logs
Note: The --background
feature is not recommended at this time as there is no way (eg. RPC) to communitcate with the node.
/home/ricmoo> pycoind-node
The --seek-peers 0
will prevent the node from adding any new peers beyond the explicitly added --connect
peers.
/home/ricmoo> pycoind-node --coin litecoin --connect 127.0.0.1 --seek-peers 0 --data-dir /tmp/litecoin
This tool is useful for exploring the blockchain from the command line. It can only examine a local blockchain, so you must have had node sync (or currently syncing) the blockchain from the network.
usage: pycoind-blockchain [--coin COINNAME] [--data-dir DIRECTORY] [--no-init]
[--block BLOCK_HASH | --height HEIGHT | --txid TXID]
[--big-endian | --little-endian] [--txns] [--inputs]
[--outputs] [--strict] [-h] [-v] [--json]
Blockchain Management Tool
Blockchain Options:
--coin COINNAME specify coin (default: bitcoin)
--data-dir DIRECTORY database directory (default: ~/.pycoind/data)
--no-init do not create data-dir if missing
Block Explorer:
--block BLOCK_HASH dump a block by its block hash
--height HEIGHT dump a block by its height
--txid TXID dump a transaction by its txid
--big-endian display values as big-endian
--little-endian display values as little-endian
--txns include transactions for blocks
--inputs include inputs for transactions
--outputs include outputs transactions
--strict search using only the display endianess
Output:
-h, --help show this help message and exit
-v, --version show program's version number and exit
--json output in JSON
Blocks can be located by their block hash:
/home/ricmoo> pycoind-blockchain --block 00000000000000001bb82a7f5973618cfd3185ba1ded04dd852a653f92a27c45
Height: 314159
Hash: 00000000000000001bb82a7f5973618cfd3185ba1ded04dd852a653f92a27c45
Previous Hash: 00000000000000003021634037ebf164433fa819aac82d4dac8852e14a1a6952
Merkle Root: 85d96247cb71e427b250e01b2b0e55a404976f49bc557a5ab3dd2e585ff7af2c
Next Hash: 00000000000000002700a33cb08fb90741b5f58f58b1a12ccd6238156095b36a
Timestamp: 1407292005
Version: 2
Bits: 406498978
Difficulty: 18736441558.3
Nonce: 474785672
Txn Count: 779
or by their height in the blockchain:
/home/ricmoo> pycoind-blockchain --height 314159
Height: 314159
Hash: 00000000000000001bb82a7f5973618cfd3185ba1ded04dd852a653f92a27c45
Previous Hash: 00000000000000003021634037ebf164433fa819aac82d4dac8852e14a1a6952
Merkle Root: 85d96247cb71e427b250e01b2b0e55a404976f49bc557a5ab3dd2e585ff7af2c
Next Hash: 00000000000000002700a33cb08fb90741b5f58f58b1a12ccd6238156095b36a
Timestamp: 1407292005
Version: 2
Bits: 406498978
Difficulty: 18736441558.3
Nonce: 474785672
Txn Count: 779
Block heights may also be specified as negative numbers to search form the top. To examine the top block in the blockchain:
/home/ricmoo> pycoind-blockchain --height -1
Height: 318962
Hash: 00000000000000000105e684173d5262bc7b46206f9efa2283e47272fe868255
Previous Hash: 00000000000000000bfd40deddbc1c1e919a7e923fd283bba05cab59bde9b4b5
Merkle Root: bde3bb92633b519b365c97da17be96177ecc041e631f71c77a40764cbaf1b39d
Next Hash: None
Timestamp: 1409775099
Version: 2
Bits: 405280238
Difficulty: 27428630902.3
Nonce: 3973936217
Txn Count: 253
The --txns
will list all transactions (instead of merely the number of transactions):
/home/ricmoo> pycoind-blockchain --height 0 --txns
Height: 0
Hash: 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
Previous Hash: 0000000000000000000000000000000000000000000000000000000000000000
Merkle Root: 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
Next Hash: 00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048
Timestamp: 1231006505
Version: 1
Bits: 486604799
Difficulty: 1.0
Nonce: 2083236893
Txn Count: 1
Transactions:
4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
Using a txid, the transaction can then be examined:
/home/ricmoo> pycoind-blockchain --txid 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
Txid: 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
Block: 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
Index: 0
Version: 1
Lock Time: 0
Input Count: 1
Output Count: 1
The inputs and outputs can be examined as well by using --inputs
and --outputs
respectively.
/home/ricmoo> pycoind-blockchain --txid 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b --inputs --outputs
Txid: 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
Block: 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
Index: 0
Version: 1
Lock Time: 0
Input Count: 1
Output Count: 1
Inputs:
Input #0
Previous Output Hash: 0000000000000000000000000000000000000000000000000000000000000000
Previous Output Index: 4294967295
Signature Script (Hex): 04ffff001d0104455468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73
Signature Script: ffff001d 04 5468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73
Sequence: 4294967295
Outputs:
Output #0
Value: 5000000000
Public Key Script (Hex): 4104678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5fac
Public Key Script: 04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f OP_CHECKSIG
Using --json
the output will provide the output in a machine-readable JSON container.
/home/ricmoo> pycoind-blockchain --height 0 --txns --json
{
"nonce": 2083236893,
"next_hash": "00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048",
"hash": "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",
"txn_count": 1,
"timestamp": 1231006505,
"merkle_root": "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b",
"transactions": [
"4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"
],
"height": 0,
"difficulty": 1.0,
"version": 1,
"previous_hash": "0000000000000000000000000000000000000000000000000000000000000000",
"bits": 486604799
}
/home/ricmoo> pycoind-blockchain --txid 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b --inputs --outputs --json
{
"index": 0,
"lock_time": 0,
"inputs": [
{
"signature_script": "04ffff001d0104455468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73",
"previous_output": {
"index": 4294967295,
"hash": "0000000000000000000000000000000000000000000000000000000000000000"
},
"sequence": 4294967295
}
],
"outputs": [
{
"pk_script": "4104678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5fac",
"value": 5000000000
}
],
"output_count": 1,
"txid": "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b",
"version": 1,
"input_count": 1,
"block": "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f"
}
This library is broken up into the following packages. (see API below)
pycoind.blockchain
- manages the databases of blocks, transactions and unspent transaction outputs (utxo)pycoind.coins
- coin specific parameterspycoind.node
- connects to the peer-to-peer network and manages peer connectionspycoind.protocol
- serializes and deserializes the network protocol messagespycoind.script
- script language for processing transactionspycoind.util
- various of useful bits and piecespycoind.wallet
- wallet and address management
Some parts of the protocol (ie. BIP38 wallets) use an intentionally CPU and memory intensive algorithm called scrypt, which performs very poorly in pure-Python. There are a few options to improve performance:
- Python Bindings: a Python wrapper for the C implmentation of scrypt. Download from pypi or use pip,
pip install scrypt
- Pypy: a JIT-compiler and runtime for Python that can run pycoind about 600x times faster. Download from pypy.org. It can be installed locally without root permissions.
This demonstrates the simplified blockchain API for deailing with read-only access to a pycoind blockchain database. This should suffice for most people's needs.
Write-access will not be covered here, but interested parties should look at the pycoind.blockchain.block.Database
and pycoind.blockchain.transaction.Database
.
>>> import pycoind
>>> # Open up a blockchian database (defaults to bitcoin)
>>> blockchain = pycoind.Blockchain()
>>> # Get a block by its blockhash
>>> block_hash = '9a22db7fd25e719abf9e8ccf869fbbc1e22fa71822a37efae054c17b00000000'.decode('hex')
>>> print blockchain.get_block(block_hash)
<Block 9a22db7fd25e719abf9e8ccf869fbbc1e22fa71822a37efae054c17b00000000>
>>> # The blockchain's total height
>>> len(blockchain)
305128
>>> # Get a block by its height (0 is the genesis)
>>> block = blockchain[100]
>>> print block
<Block 9a22db7fd25e719abf9e8ccf869fbbc1e22fa71822a37efae054c17b00000000>
>>> # Getting the next and previous block of a block...
>>> print block.next_block
<Block 84999d1fa0ae9b7eb8b75fa8ad765c6d467a6117015860dce4d89bb600000000>
>>> block.previous_block
<Block 95194b8567fe2e8bbda931afd01a7acd399b9325cb54683e64129bcd00000000>
>>> # The most recent block (negative indices look from the top)
>>> block = blockchain[-1]
>>> print block
<Block a97c1c20f983e06e286e73317e0ef4d60bc9d128d26de8100000000000000000>
>>> # The various attributes on a block...
>>> block.hash.encode('hex')
'a97c1c20f983e06e286e73317e0ef4d60bc9d128d26de8100000000000000000'
>>> block.version
2
>>> block.previous_hash
'cda8ccb789212be51f77927f8ad709337deb88f37e5ade330000000000000000'
>>> block.merkle_root.encode('hex')
'49b74a21aa97781ed70bb48ea7bf2ffd9790d3ac8ad1a56a8f082155d90df7b8'
>>> block.timestamp
1402411608
>>> block.bits
408782234
>>> block.nonce
1267643715
>>> block.height
305127
>>> block.txn_count
328
>>> # See below for more with transactions
>>> block.transactions
(<pycoind.blockchain.transaction.Transaction object at 0x102dd7ad0>, ... )
>>> # Get a transaction
>>> txid = '370b0e8298cf00b47a61ebac3381d38f38f62b065ef5d8dd3cfd243e4b6e9137'.decode('hex')
>>> txn = blockchain.get_transaction(txid)
>>> print txn
<Transaction hash=0x370b0e8298cf00b47a61ebac3381d38f38f62b065ef5d8dd3cfd243e4b6e9137>
>>> # Get the block for a transaction
>>> blockchain.get_transaction_block(txn)
<Block a97c1c20f983e06e286e73317e0ef4d60bc9d128d26de8100000000000000000>
>>> # The various attributes on a transactio...
>>> txn.version
1
>>> txn.inputs
(<pycoind.protocol.format.TxnIn object at 0x1025d6950>,)
>>> txn.outputs
(<pycoind.protocol.format.TxnOut object at 0x1025e82d0>,
<pycoind.protocol.format.TxnOut object at 0x1025e8390>)
>>> txn.lock_time
0
>>> txn.hash.encode('hex')
'370b0e8298cf00b47a61ebac3381d38f38f62b065ef5d8dd3cfd243e4b6e9137'
>>> txn.index
1
>>> # The raw transaction object from the network
>>> txn.txn
<pycoind.protocol.format.Txn object at 0x1025d68d0>
>>> # The raw bytes from the network
>>> txn.txn_binary.encode('hex')
'''0100000001430e1bc96057b9465b0e53111f260679222b0bb283
75c7e3cf5bb15ccb0dc2f9000000008b483045022058ba932ffa
927aa9a478310fd1112abb0df69e4e5f286b3a5ec2c6ae00912c
b7022100b0c3bb6bd80440ae7427c3ea03128a99c6f3348aa677
15f5760648512e00992e0141044d226629ff5244f2194505fa4b
a911564137dad160a3b8831f682d14e194dea1a6bdc8962132c2
c07ff85076ad9e49051513e1ba2cf3d69ac3c333d4da576e02ff
ffffff0240c06503000000001976a914d64b71729a504d23d948
88d3f712d55753d5d62288ac1c5e1300000000001976a914e1cd
18b90a5db94b58dd643e706a462b75e512a588ac00000000'''
Coming soon...
Verifying the blockchain is slow, which must be done first. Then Checkpointing will be implemented and finally the UTXO database will be turned on.
It is currently available in pycoind.blockchain.unspent
, just turned off (and likely buggy).
I will add more to this later.
>>> import pycoind
>>> node = pycoind.Node(coin = pycoind.coins.Litecoin)
>>> node.add_peer(('127.0.0.1', node.coin.port))
>>> node.serve_forever()
The script library can be used for a lot more, but for now, the main purpose most people will wish to use it is to display a script.
>>> import pycoind
>>> # txid: 370b0e8298cf00b47a61ebac3381d38f38f62b065ef5d8dd3cfd243e4b6e9137 (input# 0)
>>> pk_script = 'v\xa9\x14\xd6Kqr\x9aPM#\xd9H\x88\xd3\xf7\x12\xd5WS\xd5\xd6"\x88\xac'
>>> print pycoind.Tokenizer(pk_script)
OP_DUP OP_HASH160 d64b71729a504d23d94888d3f712d55753d5d622 OP_EQUALVERIFY OP_CHECKSIG
Wallets are not yet implemented beyond a stub, however the Address
API is quite useful.
>>> import pycoind
>>> # Generate a new address
>>> address = pycoind.Address.generate(compressed = True)
>>> print address
<Address address=1PdrvpMr37oii5Wir2zsWxDHbG2n6z7sMu
public_key=033adac21649eace0570478eea3af918e191af33430d9b5bb5168eecc61a541861
private_key=**redacted**>
>>> address.address
'1PdrvpMr37oii5Wir2zsWxDHbG2n6z7sMu'
>>> address.public_key.encode('hex')
'033adac21649eace0570478eea3af918e191af33430d9b5bb5168eecc61a541861'
>>> address.compressed
True
>>> address.private_key
'KyBxUHBq7L6GvxwiX9Dd5t13HtGF3WbW3JsZviVSuLUWeX3mMJxS'
>>> # Return a decompressed instance
>>> decompressed = address.decompress()
>>> print decompressed
<Address address=1Joh7VqCXJzN8UCMdrCQTYvVA8mmmkCH3v
public_key=043adac21649eace0570478eea3af918e191af33430d9b5bb5168eecc61a541861
be0fd196952b92c1b3a9eb4b2c4cde86f23fa2a9a0113afbf7032dc7a415f41b
private_key=**redacted**>
>>> # Return a compressed instance
>>> print decompressed.compress()
<Address address=1PdrvpMr37oii5Wir2zsWxDHbG2n6z7sMu
public_key=033adac21649eace0570478eea3af918e191af33430d9b5bb5168eecc61a541861
private_key=**redacted**>
>>> # Return an encrypted instance
>>> encrypted = address.encrypt('foo')
>>> print encrypted
<EncryptedAddress private_key=6PYN7vxDNYgNn7cBVfB8KErNWWBKTKFRA9yB9DoQnukhX1iJzj6mkPgHvj>
>>> # Decrypt with an incorrect password
>>> print encrypted.decrypt('bar')
None
>>> print encrypted.decrypt('foo')
<Address address=1PdrvpMr37oii5Wir2zsWxDHbG2n6z7sMu
public_key=033adac21649eace0570478eea3af918e191af33430d9b5bb5168eecc61a541861
private_key=**redacted**>
>>> # Generate a brain wallet a la https://brainwallet.github.io
>>> passphrase = 'foobar'
>>> bytes = pycoind.util.hash.sha256('foobar')
>>> print pycoind.Address.from_binary(bytes, compressed = False)
<Address address=15cN6CmsrERdrkTWU5VsDBfQv1bTqsAGh1
public_key=0481f098ee628abc173d50d1641485d58a659c79ded5acb4d889545f3ca07ada10
b75bbab5c65f0a1769774ff4411ebfbf047b4f537e97450730a9afd2ec167ac6
private_key=**redacted**>
This is generally not a grand idea, as there are already so many out there, but if you believe you have a novel idea to experiment with, who am I to stand in your way. Let's assume you are creating a new coin called a Kriegerand.
- Copy the pycoind/coins/template.py to pycoind/coins/kriegerand.py
- Edit the file, filling in the blanks
- Add the coin to pycoind/coins/__init__.py (import it and add it to the
Coins
array) - pycoind-node --coin kriegerand
- Done. Now you can start mining. (@TODO: explain how to set up mining...)
There are so many things possible, but for example, let's say you wish to figure out what percentage of all outputs ever generated, are currently unspent.
This is old and wrong... I will update this to use the new API soon.
import pycoind
blockchain = pycoind.BlockChain()
last_count = -100000
spent = 0
unspent = set()
# for each block...
for block in blockchain:
# give some feedback once and a while as this could take a LONG time
if spent - last_spent > 1000:
print "spent: %d, unspent: %d" % (spent, len(unspent))
last_spent = spent
# transactions could be None if the block is not downloaded yet
txns = b.transactions
if not txns: continue
# for each transaction...
for txn in txns:
# track all the outputs as unspent
for (i, tx_out) in enumerate(txn.tx_out):
unspent.add((txn.hash, i))
count += 1
# each input has spent an unspent
for tx_in in txn.tx_in:
prev_output = tx_in.previous_output.hash
# this means the input was generated
if prev_output == chr(0) * 32: continue
# remove the spent from unspent
prev_output = (prev_output, tx_in.previous_output.index)
if prev_output in unspent:
unspent.remove(prev_output)
spent += 1
else:
print "possibly double-spend: %r" % prev_output
# The final answer
print len(unspent) / (len(unspent) + spent)
Perhaps you have a hosting company which restricts your monthly bandwidth and you would like to run a full node, but not at the risk of going over your cap.
This is a very basic solution, as you would probably want to track bandwidth across restarts (using a file or database) and group it by month; such extras are left as an exercise to the reader.
import pycoind
class CappedNode(pycoind.node.Node):
# 1GB
BANDWIDTH_CAP = (1 << 30)
def begin_loop(self):
'''Begin loop is called at the start of each event loop. Subclasses
do not need to call the parent's begin_loop.'''
if (self.rx_bytes + self.tx_bytes) > self.BANDWIDTH_CAP:
raise pycoind.node.StopNode()
node = CappedNode()
node.serve_forever()
This will be slow. VERY slow. It is just provided as an example. If you really want a vanity address with any complexity, check out vanitygen.
>>> import pycoind
>>> while True:
... address = pycoind.wallet.Address.generate()
... if address.address.startswith('1Moo'):
... break
>>> address.address
'1MooEooyXNVTfGDh86Er1CGgzpXdYMZefm'
>>> address.private_key
'5HwhzLizMNEzGpKvtbkdFo3AuMg8PRp4rxFfSEufau8syue5vLS'
Compatible with vanitygen, this method allows an untrusted source to generate private keys for you, while only being able to compute the public key and address that would result.
You create a public/private key pair A on a host you trust:
>>> import pycoind
>>> address = pycoind.wallet.Address.generate()
>>> pubkeyA = address.get_public_key(compressed = False)
>>> pubkeyA.encode('hex')
'''044715c46005a73ae7b87ef22ffeec67380ea15838b3bd8f71995066847b
76cc14e037397542f5dbc11ac8453316d22757c9750edc532e6469fcb2f1
c55194507f'''
>>> privkeyA = address.private_key
>>> privkeyA
'5JT2oBFsHwBu3xedw5kGiUCZvujiS7HzErmumETJYEnmcGXZkUW'
(this is the same as using vanitygen, keyconv -G
)
The public key pubkeyA
may now be given to a vanity pool or you could run vanitygen on a host you don't trust (maybe on some sketchy compute cloud).
This allows a host you do not trust to search for a private key B, that when combined with the above private key A (which you keep secret) will yield the desired address, without the untrusted host ever knowing the final private key.
>>> from pycoind.util.piecewise import get_address
>>> while True:
... address = pycoind.wallet.Address.generate()
... result = get_address(pubkeyA, address.private_key)
... if result.startswith("1Moo"):
... break
>>> address.address
'1MooifZYH39f4AFULunTRZ1iCBNzD1cQQL'
>>> privkeyB = address.private_key
>>> privkeyB
'5HuEjrhpN9fhVVd9sVAwqsQu9M7o9PVEHSPm7aTpo2STZpJjjNk'
(this is the same as using vanitygen, vanitygen -P pubkeyA 1Moo
)
With the result from the untrusted source, you can now combine the two keys:
>>> from pycoind.util.piecewise import combine_private_keys
>>> privkey = combine_private_keys(privkeyA, privkeyB)
>>> privkey
'5JXyxMWbadHcHStWmNUKUHsLrf2bNMv8oV6tedsP6PNb1PwvqsZ'
>>> address = pycoind.wallet.Address(private_key = privkey)
>>> address.address
'1MooifZYH39f4AFULunTRZ1iCBNzD1cQQL'
(this is the same as using vanitygen, keyconv -c privkeyA privkeyB
)
This needs to be a thing...
The standard Python library leaves much to be desired in the area of reliable, cross-platform file-locking.
SQLite is the most portable way to handle the delicate issues with having multiple threads and processes accessing the same file, although it still has it's issues. See SQLite's things that can go wrong for more details, but for the most part you should be safe so long as you NEVER delete a journal file and avoid network based file-systems (eg. NFS).
They are capped at approximately 1.75 GB, for people that wish to keep the blockchain on a FAT32 formatted USB, which has a 2GB file size limit.
- Bitcoin - 1PycoindXg8zWjn82tRSzGwy953FxrGNfB
- Dogecoin - DPycoindsmBiWvo5gcdNNGLDYwzDkU5fFX
- Litecoin - LPycoindHX4VmQLeJE7LbWUfJG5TfRDhtx