Skip to content

Commit

Permalink
fix example for enas
Browse files Browse the repository at this point in the history
  • Loading branch information
tenzen-y committed Nov 13, 2021
1 parent 67d3e50 commit 03bc04f
Show file tree
Hide file tree
Showing 9 changed files with 352 additions and 16 deletions.
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
FROM ibmcom/tensorflow-ppc64le:2.2.0-py3
RUN pip install rfc3339 grpcio googleapis-common-protos
ADD . /usr/src/app/github.com/kubeflow/katib
WORKDIR /usr/src/app/github.com/kubeflow/katib/cmd/metricscollector/v1beta1/tfevent-metricscollector/
RUN pip install --no-cache-dir -r requirements.txt
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ ENV TARGET_DIR /opt/enas-cnn-cifar10
ADD examples/v1beta1/trial-images/enas-cnn-cifar10 ${TARGET_DIR}
WORKDIR ${TARGET_DIR}

RUN pip3 install --no-cache-dir -r requirements.txt
ENV PYTHONPATH ${TARGET_DIR}

RUN chgrp -R 0 ${TARGET_DIR} \
Expand Down
20 changes: 9 additions & 11 deletions examples/v1beta1/trial-images/enas-cnn-cifar10/RunTrial.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,10 @@
import keras
import numpy as np
from tensorflow import keras
from keras.datasets import cifar10
from ModelConstructor import ModelConstructor
from tensorflow.keras.utils import to_categorical
from tensorflow.python.keras.utils.multi_gpu_utils import multi_gpu_model
from keras.preprocessing.image import ImageDataGenerator
import argparse
import time

if __name__ == "__main__":
parser = argparse.ArgumentParser(description='TrainingContainer')
Expand Down Expand Up @@ -46,7 +44,7 @@

test_model.summary()
test_model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(lr=1e-3, decay=1e-4),
optimizer=keras.optimizers.Adam(learning_rate=1e-3, decay=1e-4),
metrics=['accuracy'])

(x_train, y_train), (x_test, y_test) = cifar10.load_data()
Expand All @@ -67,12 +65,12 @@

print(">>> Data Loaded. Training starts.")
for e in range(num_epochs):
print("\nTotal Epoch {}/{}".format(e+1, num_epochs))
history = test_model.fit_generator(generator=aug_data_flow,
steps_per_epoch=int(len(x_train)/128)+1,
epochs=1, verbose=1,
validation_data=(x_test, y_test))
print("Training-Accuracy={}".format(history.history['acc'][-1]))
print("\nTotal Epoch {}/{}".format(e + 1, num_epochs))
history = test_model.fit(aug_data_flow,
steps_per_epoch=int(len(x_train) / 128) + 1,
epochs=1, verbose=1,
validation_data=(x_test, y_test))
print("Training-Accuracy={}".format(history.history['accuracy'][-1]))
print("Training-Loss={}".format(history.history['loss'][-1]))
print("Validation-Accuracy={}".format(history.history['val_acc'][-1]))
print("Validation-Accuracy={}".format(history.history['val_accuracy'][-1]))
print("Validation-Loss={}".format(history.history['val_loss'][-1]))
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
scipy>=1.7.2
Original file line number Diff line number Diff line change
Expand Up @@ -8,4 +8,4 @@ If you want to read more about this example, visit the official
GitHub repository.

Katib uses this training container in some Experiments, for instance in the
[TF Event Metrics Collector](../../metrics-collector/tfevent-metrics-collector.yaml#L55-L64).
[TF Event Metrics Collector](../../metrics-collector/tfevent-metrics-collector.yaml#L42-L49).
333 changes: 333 additions & 0 deletions examples/v1beta1/trial-images/tf-mnist-with-summaries/input_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,333 @@
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data (deprecated).
This module and all its submodules are deprecated.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import gzip
import os

import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated

_Datasets = collections.namedtuple('_Datasets', ['train', 'validation', 'test'])

# CVDF mirror of http://yann.lecun.com/exdb/mnist/
DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/'


def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]


@deprecated(None, 'Please use tf.data to implement this functionality.')
def _extract_images(f):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].
Args:
f: A file object that can be passed into a gzip reader.
Returns:
data: A 4D uint8 numpy array [index, y, x, depth].
Raises:
ValueError: If the bytestream does not start with 2051.
"""
print('Extracting', f.name)
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError('Invalid magic number %d in MNIST image file: %s' %
(magic, f.name))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data


@deprecated(None, 'Please use tf.one_hot on tensors.')
def _dense_to_one_hot(labels_dense, num_classes):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot


@deprecated(None, 'Please use tf.data to implement this functionality.')
def _extract_labels(f, one_hot=False, num_classes=10):
"""Extract the labels into a 1D uint8 numpy array [index].
Args:
f: A file object that can be passed into a gzip reader.
one_hot: Does one hot encoding for the result.
num_classes: Number of classes for the one hot encoding.
Returns:
labels: a 1D uint8 numpy array.
Raises:
ValueError: If the bystream doesn't start with 2049.
"""
print('Extracting', f.name)
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError('Invalid magic number %d in MNIST label file: %s' %
(magic, f.name))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return _dense_to_one_hot(labels, num_classes)
return labels


class _DataSet(object):
"""Container class for a _DataSet (deprecated).
THIS CLASS IS DEPRECATED.
"""

@deprecated(None, 'Please use alternatives such as official/mnist/_DataSet.py'
' from tensorflow/models.')
def __init__(self,
images,
labels,
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True,
seed=None):
"""Construct a _DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`. Seed arg provides for convenient deterministic testing.
Args:
images: The images
labels: The labels
fake_data: Ignore inages and labels, use fake data.
one_hot: Bool, return the labels as one hot vectors (if True) or ints (if
False).
dtype: Output image dtype. One of [uint8, float32]. `uint8` output has
range [0,255]. float32 output has range [0,1].
reshape: Bool. If True returned images are returned flattened to vectors.
seed: The random seed to use.
"""
seed1, seed2 = random_seed.get_seed(seed)
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seed1 if seed is None else seed2)
dtype = dtypes.as_dtype(dtype).base_dtype
if dtype not in (dtypes.uint8, dtypes.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
self._num_examples = images.shape[0]

# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == dtypes.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0

@property
def images(self):
return self._images

@property
def labels(self):
return self._labels

@property
def num_examples(self):
return self._num_examples

@property
def epochs_completed(self):
return self._epochs_completed

def next_batch(self, batch_size, fake_data=False, shuffle=True):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)
], [fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
perm0 = numpy.arange(self._num_examples)
numpy.random.shuffle(perm0)
self._images = self.images[perm0]
self._labels = self.labels[perm0]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
rest_num_examples = self._num_examples - start
images_rest_part = self._images[start:self._num_examples]
labels_rest_part = self._labels[start:self._num_examples]
# Shuffle the data
if shuffle:
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self.images[perm]
self._labels = self.labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size - rest_num_examples
end = self._index_in_epoch
images_new_part = self._images[start:end]
labels_new_part = self._labels[start:end]
return numpy.concatenate((images_rest_part, images_new_part),
axis=0), numpy.concatenate(
(labels_rest_part, labels_new_part), axis=0)
else:
self._index_in_epoch += batch_size
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]


@deprecated(None, 'Please write your own downloading logic.')
def _maybe_download(filename, work_directory, source_url):
"""Download the data from source url, unless it's already here.
Args:
filename: string, name of the file in the directory.
work_directory: string, path to working directory.
source_url: url to download from if file doesn't exist.
Returns:
Path to resulting file.
"""
if not gfile.Exists(work_directory):
gfile.MakeDirs(work_directory)
filepath = os.path.join(work_directory, filename)
if not gfile.Exists(filepath):
urllib.request.urlretrieve(source_url, filepath)
with gfile.GFile(filepath) as f:
size = f.size()
print('Successfully downloaded', filename, size, 'bytes.')
return filepath


@deprecated(None, 'Please use alternatives such as:'
' tensorflow_datasets.load(\'mnist\')')
def read_data_sets(train_dir,
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True,
validation_size=5000,
seed=None,
source_url=DEFAULT_SOURCE_URL):
if fake_data:

def fake():
return _DataSet([], [],
fake_data=True,
one_hot=one_hot,
dtype=dtype,
seed=seed)

train = fake()
validation = fake()
test = fake()
return _Datasets(train=train, validation=validation, test=test)

if not source_url: # empty string check
source_url = DEFAULT_SOURCE_URL

train_images_file = 'train-images-idx3-ubyte.gz'
train_labels_file = 'train-labels-idx1-ubyte.gz'
test_images_file = 't10k-images-idx3-ubyte.gz'
test_labels_file = 't10k-labels-idx1-ubyte.gz'

local_file = _maybe_download(train_images_file, train_dir,
source_url + train_images_file)
with gfile.Open(local_file, 'rb') as f:
train_images = _extract_images(f)

local_file = _maybe_download(train_labels_file, train_dir,
source_url + train_labels_file)
with gfile.Open(local_file, 'rb') as f:
train_labels = _extract_labels(f, one_hot=one_hot)

local_file = _maybe_download(test_images_file, train_dir,
source_url + test_images_file)
with gfile.Open(local_file, 'rb') as f:
test_images = _extract_images(f)

local_file = _maybe_download(test_labels_file, train_dir,
source_url + test_labels_file)
with gfile.Open(local_file, 'rb') as f:
test_labels = _extract_labels(f, one_hot=one_hot)

if not 0 <= validation_size <= len(train_images):
raise ValueError(
'Validation size should be between 0 and {}. Received: {}.'.format(
len(train_images), validation_size))

validation_images = train_images[:validation_size]
validation_labels = train_labels[:validation_size]
train_images = train_images[validation_size:]
train_labels = train_labels[validation_size:]

options = dict(dtype=dtype, reshape=reshape, seed=seed)

train = _DataSet(train_images, train_labels, **options)
validation = _DataSet(validation_images, validation_labels, **options)
test = _DataSet(test_images, test_labels, **options)

return _Datasets(train=train, validation=validation, test=test)

Loading

0 comments on commit 03bc04f

Please sign in to comment.