-
Notifications
You must be signed in to change notification settings - Fork 442
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
352 additions
and
16 deletions.
There are no files selected for viewing
1 change: 0 additions & 1 deletion
1
cmd/metricscollector/v1beta1/tfevent-metricscollector/Dockerfile.ppc64le
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
1 change: 1 addition & 0 deletions
1
examples/v1beta1/trial-images/enas-cnn-cifar10/requirements.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
scipy>=1.7.2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
333 changes: 333 additions & 0 deletions
333
examples/v1beta1/trial-images/tf-mnist-with-summaries/input_data.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,333 @@ | ||
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Functions for downloading and reading MNIST data (deprecated). | ||
This module and all its submodules are deprecated. | ||
""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import collections | ||
import gzip | ||
import os | ||
|
||
import numpy | ||
from six.moves import urllib | ||
from six.moves import xrange # pylint: disable=redefined-builtin | ||
|
||
from tensorflow.python.framework import dtypes | ||
from tensorflow.python.framework import random_seed | ||
from tensorflow.python.platform import gfile | ||
from tensorflow.python.util.deprecation import deprecated | ||
|
||
_Datasets = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) | ||
|
||
# CVDF mirror of http://yann.lecun.com/exdb/mnist/ | ||
DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/' | ||
|
||
|
||
def _read32(bytestream): | ||
dt = numpy.dtype(numpy.uint32).newbyteorder('>') | ||
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] | ||
|
||
|
||
@deprecated(None, 'Please use tf.data to implement this functionality.') | ||
def _extract_images(f): | ||
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]. | ||
Args: | ||
f: A file object that can be passed into a gzip reader. | ||
Returns: | ||
data: A 4D uint8 numpy array [index, y, x, depth]. | ||
Raises: | ||
ValueError: If the bytestream does not start with 2051. | ||
""" | ||
print('Extracting', f.name) | ||
with gzip.GzipFile(fileobj=f) as bytestream: | ||
magic = _read32(bytestream) | ||
if magic != 2051: | ||
raise ValueError('Invalid magic number %d in MNIST image file: %s' % | ||
(magic, f.name)) | ||
num_images = _read32(bytestream) | ||
rows = _read32(bytestream) | ||
cols = _read32(bytestream) | ||
buf = bytestream.read(rows * cols * num_images) | ||
data = numpy.frombuffer(buf, dtype=numpy.uint8) | ||
data = data.reshape(num_images, rows, cols, 1) | ||
return data | ||
|
||
|
||
@deprecated(None, 'Please use tf.one_hot on tensors.') | ||
def _dense_to_one_hot(labels_dense, num_classes): | ||
"""Convert class labels from scalars to one-hot vectors.""" | ||
num_labels = labels_dense.shape[0] | ||
index_offset = numpy.arange(num_labels) * num_classes | ||
labels_one_hot = numpy.zeros((num_labels, num_classes)) | ||
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 | ||
return labels_one_hot | ||
|
||
|
||
@deprecated(None, 'Please use tf.data to implement this functionality.') | ||
def _extract_labels(f, one_hot=False, num_classes=10): | ||
"""Extract the labels into a 1D uint8 numpy array [index]. | ||
Args: | ||
f: A file object that can be passed into a gzip reader. | ||
one_hot: Does one hot encoding for the result. | ||
num_classes: Number of classes for the one hot encoding. | ||
Returns: | ||
labels: a 1D uint8 numpy array. | ||
Raises: | ||
ValueError: If the bystream doesn't start with 2049. | ||
""" | ||
print('Extracting', f.name) | ||
with gzip.GzipFile(fileobj=f) as bytestream: | ||
magic = _read32(bytestream) | ||
if magic != 2049: | ||
raise ValueError('Invalid magic number %d in MNIST label file: %s' % | ||
(magic, f.name)) | ||
num_items = _read32(bytestream) | ||
buf = bytestream.read(num_items) | ||
labels = numpy.frombuffer(buf, dtype=numpy.uint8) | ||
if one_hot: | ||
return _dense_to_one_hot(labels, num_classes) | ||
return labels | ||
|
||
|
||
class _DataSet(object): | ||
"""Container class for a _DataSet (deprecated). | ||
THIS CLASS IS DEPRECATED. | ||
""" | ||
|
||
@deprecated(None, 'Please use alternatives such as official/mnist/_DataSet.py' | ||
' from tensorflow/models.') | ||
def __init__(self, | ||
images, | ||
labels, | ||
fake_data=False, | ||
one_hot=False, | ||
dtype=dtypes.float32, | ||
reshape=True, | ||
seed=None): | ||
"""Construct a _DataSet. | ||
one_hot arg is used only if fake_data is true. `dtype` can be either | ||
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into | ||
`[0, 1]`. Seed arg provides for convenient deterministic testing. | ||
Args: | ||
images: The images | ||
labels: The labels | ||
fake_data: Ignore inages and labels, use fake data. | ||
one_hot: Bool, return the labels as one hot vectors (if True) or ints (if | ||
False). | ||
dtype: Output image dtype. One of [uint8, float32]. `uint8` output has | ||
range [0,255]. float32 output has range [0,1]. | ||
reshape: Bool. If True returned images are returned flattened to vectors. | ||
seed: The random seed to use. | ||
""" | ||
seed1, seed2 = random_seed.get_seed(seed) | ||
# If op level seed is not set, use whatever graph level seed is returned | ||
numpy.random.seed(seed1 if seed is None else seed2) | ||
dtype = dtypes.as_dtype(dtype).base_dtype | ||
if dtype not in (dtypes.uint8, dtypes.float32): | ||
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % | ||
dtype) | ||
if fake_data: | ||
self._num_examples = 10000 | ||
self.one_hot = one_hot | ||
else: | ||
assert images.shape[0] == labels.shape[0], ( | ||
'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) | ||
self._num_examples = images.shape[0] | ||
|
||
# Convert shape from [num examples, rows, columns, depth] | ||
# to [num examples, rows*columns] (assuming depth == 1) | ||
if reshape: | ||
assert images.shape[3] == 1 | ||
images = images.reshape(images.shape[0], | ||
images.shape[1] * images.shape[2]) | ||
if dtype == dtypes.float32: | ||
# Convert from [0, 255] -> [0.0, 1.0]. | ||
images = images.astype(numpy.float32) | ||
images = numpy.multiply(images, 1.0 / 255.0) | ||
self._images = images | ||
self._labels = labels | ||
self._epochs_completed = 0 | ||
self._index_in_epoch = 0 | ||
|
||
@property | ||
def images(self): | ||
return self._images | ||
|
||
@property | ||
def labels(self): | ||
return self._labels | ||
|
||
@property | ||
def num_examples(self): | ||
return self._num_examples | ||
|
||
@property | ||
def epochs_completed(self): | ||
return self._epochs_completed | ||
|
||
def next_batch(self, batch_size, fake_data=False, shuffle=True): | ||
"""Return the next `batch_size` examples from this data set.""" | ||
if fake_data: | ||
fake_image = [1] * 784 | ||
if self.one_hot: | ||
fake_label = [1] + [0] * 9 | ||
else: | ||
fake_label = 0 | ||
return [fake_image for _ in xrange(batch_size) | ||
], [fake_label for _ in xrange(batch_size)] | ||
start = self._index_in_epoch | ||
# Shuffle for the first epoch | ||
if self._epochs_completed == 0 and start == 0 and shuffle: | ||
perm0 = numpy.arange(self._num_examples) | ||
numpy.random.shuffle(perm0) | ||
self._images = self.images[perm0] | ||
self._labels = self.labels[perm0] | ||
# Go to the next epoch | ||
if start + batch_size > self._num_examples: | ||
# Finished epoch | ||
self._epochs_completed += 1 | ||
# Get the rest examples in this epoch | ||
rest_num_examples = self._num_examples - start | ||
images_rest_part = self._images[start:self._num_examples] | ||
labels_rest_part = self._labels[start:self._num_examples] | ||
# Shuffle the data | ||
if shuffle: | ||
perm = numpy.arange(self._num_examples) | ||
numpy.random.shuffle(perm) | ||
self._images = self.images[perm] | ||
self._labels = self.labels[perm] | ||
# Start next epoch | ||
start = 0 | ||
self._index_in_epoch = batch_size - rest_num_examples | ||
end = self._index_in_epoch | ||
images_new_part = self._images[start:end] | ||
labels_new_part = self._labels[start:end] | ||
return numpy.concatenate((images_rest_part, images_new_part), | ||
axis=0), numpy.concatenate( | ||
(labels_rest_part, labels_new_part), axis=0) | ||
else: | ||
self._index_in_epoch += batch_size | ||
end = self._index_in_epoch | ||
return self._images[start:end], self._labels[start:end] | ||
|
||
|
||
@deprecated(None, 'Please write your own downloading logic.') | ||
def _maybe_download(filename, work_directory, source_url): | ||
"""Download the data from source url, unless it's already here. | ||
Args: | ||
filename: string, name of the file in the directory. | ||
work_directory: string, path to working directory. | ||
source_url: url to download from if file doesn't exist. | ||
Returns: | ||
Path to resulting file. | ||
""" | ||
if not gfile.Exists(work_directory): | ||
gfile.MakeDirs(work_directory) | ||
filepath = os.path.join(work_directory, filename) | ||
if not gfile.Exists(filepath): | ||
urllib.request.urlretrieve(source_url, filepath) | ||
with gfile.GFile(filepath) as f: | ||
size = f.size() | ||
print('Successfully downloaded', filename, size, 'bytes.') | ||
return filepath | ||
|
||
|
||
@deprecated(None, 'Please use alternatives such as:' | ||
' tensorflow_datasets.load(\'mnist\')') | ||
def read_data_sets(train_dir, | ||
fake_data=False, | ||
one_hot=False, | ||
dtype=dtypes.float32, | ||
reshape=True, | ||
validation_size=5000, | ||
seed=None, | ||
source_url=DEFAULT_SOURCE_URL): | ||
if fake_data: | ||
|
||
def fake(): | ||
return _DataSet([], [], | ||
fake_data=True, | ||
one_hot=one_hot, | ||
dtype=dtype, | ||
seed=seed) | ||
|
||
train = fake() | ||
validation = fake() | ||
test = fake() | ||
return _Datasets(train=train, validation=validation, test=test) | ||
|
||
if not source_url: # empty string check | ||
source_url = DEFAULT_SOURCE_URL | ||
|
||
train_images_file = 'train-images-idx3-ubyte.gz' | ||
train_labels_file = 'train-labels-idx1-ubyte.gz' | ||
test_images_file = 't10k-images-idx3-ubyte.gz' | ||
test_labels_file = 't10k-labels-idx1-ubyte.gz' | ||
|
||
local_file = _maybe_download(train_images_file, train_dir, | ||
source_url + train_images_file) | ||
with gfile.Open(local_file, 'rb') as f: | ||
train_images = _extract_images(f) | ||
|
||
local_file = _maybe_download(train_labels_file, train_dir, | ||
source_url + train_labels_file) | ||
with gfile.Open(local_file, 'rb') as f: | ||
train_labels = _extract_labels(f, one_hot=one_hot) | ||
|
||
local_file = _maybe_download(test_images_file, train_dir, | ||
source_url + test_images_file) | ||
with gfile.Open(local_file, 'rb') as f: | ||
test_images = _extract_images(f) | ||
|
||
local_file = _maybe_download(test_labels_file, train_dir, | ||
source_url + test_labels_file) | ||
with gfile.Open(local_file, 'rb') as f: | ||
test_labels = _extract_labels(f, one_hot=one_hot) | ||
|
||
if not 0 <= validation_size <= len(train_images): | ||
raise ValueError( | ||
'Validation size should be between 0 and {}. Received: {}.'.format( | ||
len(train_images), validation_size)) | ||
|
||
validation_images = train_images[:validation_size] | ||
validation_labels = train_labels[:validation_size] | ||
train_images = train_images[validation_size:] | ||
train_labels = train_labels[validation_size:] | ||
|
||
options = dict(dtype=dtype, reshape=reshape, seed=seed) | ||
|
||
train = _DataSet(train_images, train_labels, **options) | ||
validation = _DataSet(validation_images, validation_labels, **options) | ||
test = _DataSet(test_images, test_labels, **options) | ||
|
||
return _Datasets(train=train, validation=validation, test=test) | ||
|
Oops, something went wrong.