Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore(deps): Bump tensorflow from 1.12.0 to 1.15.0 in /examples/v1alpha3/NAS-training-containers/RL-cifar10 #1005

Conversation

dependabot[bot]
Copy link
Contributor

@dependabot dependabot bot commented on behalf of github Jan 8, 2020

Bumps tensorflow from 1.12.0 to 1.15.0.

Release notes

Sourced from tensorflow's releases.

TensorFlow 1.15.0

Release 1.15.0

This is the last 1.x release for TensorFlow. We do not expect to update the 1.x branch with features, although we will issue patch releases to fix vulnerabilities for at least one year.

Major Features and Improvements

  • As announced, tensorflow pip package will by default include GPU support (same as tensorflow-gpu now) for the platforms we currently have GPU support (Linux and Windows). It will work on machines with and without Nvidia GPUs. tensorflow-gpu will still be available, and CPU-only packages can be downloaded at tensorflow-cpu for users who are concerned about package size.
  • TensorFlow 1.15 contains a complete implementation of the 2.0 API in its compat.v2 module. It contains a copy of the 1.15 main module (without contrib) in the compat.v1 module. TensorFlow 1.15 is able to emulate 2.0 behavior using the enable_v2_behavior() function.
    This enables writing forward compatible code: by explicitly importing either tensorflow.compat.v1 or tensorflow.compat.v2, you can ensure that your code works without modifications against an installation of 1.15 or 2.0.
  • EagerTensor now supports numpy buffer interface for tensors.
  • Add toggles tf.enable_control_flow_v2() and tf.disable_control_flow_v2() for enabling/disabling v2 control flow.
  • Enable v2 control flow as part of tf.enable_v2_behavior() and TF2_BEHAVIOR=1.
  • AutoGraph translates Python control flow into TensorFlow expressions, allowing users to write regular Python inside tf.function-decorated functions. AutoGraph is also applied in functions used with tf.data, tf.distribute and tf.keras APIS.
  • Adds enable_tensor_equality(), which switches the behavior such that:
    • Tensors are no longer hashable.
    • Tensors can be compared with == and !=, yielding a Boolean Tensor with element-wise comparison results. This will be the default behavior in 2.0.
  • Auto Mixed-Precision graph optimizer simplifies converting models to float16 for acceleration on Volta and Turing Tensor Cores. This feature can be enabled by wrapping an optimizer class with tf.train.experimental.enable_mixed_precision_graph_rewrite().
  • Add environment variable TF_CUDNN_DETERMINISTIC. Setting to "true" or "1" forces the selection of deterministic cuDNN convolution and max-pooling algorithms. When this is enabled, the algorithm selection procedure itself is also deterministic.
  • TensorRT
    • Migrate TensorRT conversion sources from contrib to compiler directory in preparation for TF 2.0.
    • Add additional, user friendly TrtGraphConverter API for TensorRT conversion.
    • Expand support for TensorFlow operators in TensorRT conversion (e.g.
      Gather, Slice, Pack, Unpack, ArgMin, ArgMax,DepthSpaceShuffle).
    • Support TensorFlow operator CombinedNonMaxSuppression in TensorRT conversion which
      significantly accelerates object detection models.

Breaking Changes

  • Tensorflow code now produces 2 different pip packages: tensorflow_core containing all the code (in the future it will contain only the private implementation) and tensorflow which is a virtual pip package doing forwarding to tensorflow_core (and in the future will contain only the public API of tensorflow). We don't expect this to be breaking, unless you were importing directly from the implementation.
  • TensorFlow 1.15 is built using devtoolset7 (GCC7) on Ubuntu 16. This may lead to ABI incompatibilities with extensions built against earlier versions of TensorFlow.
  • Deprecated the use of constraint= and .constraint with ResourceVariable.
  • tf.keras:
    • OMP_NUM_THREADS is no longer used by the default Keras config. To configure the number of threads, use tf.config.threading APIs.
    • tf.keras.model.save_model and model.save now defaults to saving a TensorFlow SavedModel.
    • keras.backend.resize_images (and consequently, keras.layers.Upsampling2D) behavior has changed, a bug in the resizing implementation was fixed.
    • Layers now default to float32, and automatically cast their inputs to the layer's dtype. If you had a model that used float64, it will probably silently use float32 in TensorFlow2, and a warning will be issued that starts with Layer "layer-name" is casting an input tensor from dtype float64 to the layer's dtype of float32. To fix, either set the default dtype to float64 with tf.keras.backend.set_floatx('float64'), or pass dtype='float64' to each of the Layer constructors. See tf.keras.layers.Layer for more information.
    • Some tf.assert_* methods now raise assertions at operation creation time (i.e. when this Python line executes) if the input tensors' values are known at that time, not during the session.run(). When this happens, a noop is returned and the input tensors are marked non-feedable. In other words, if they are used as keys in feed_dict argument to session.run(), an error will be raised. Also, because some assert ops don't make it into the graph, the graph structure changes. A different graph can result in different per-op random seeds when they are not given explicitly (most often).

Bug Fixes and Other Changes

  • tf.estimator:
    • tf.keras.estimator.model_to_estimator now supports exporting to tf.train.Checkpoint format, which allows the saved checkpoints to be compatible with model.load_weights.
    • Fix tests in canned estimators.
    • Expose Head as public API.
    • Fixes critical bugs that help with DenseFeatures usability in TF2
  • tf.data:
    • Promoting unbatch from experimental to core API.
    • Adding support for datasets as inputs to from_tensors and from_tensor_slices and batching and unbatching of nested datasets.
  • tf.keras:
    • tf.keras.estimator.model_to_estimator now supports exporting to tf.train.Checkpoint format, which allows the saved checkpoints to be compatible with model.load_weights.
    • Saving a Keras Model using tf.saved_model.save now saves the list of variables, trainable variables, regularization losses, and the call function.
    • Deprecated tf.keras.experimental.export_saved_model and tf.keras.experimental.function. Please use tf.keras.models.save_model(..., save_format='tf') and tf.keras.models.load_model instead.
    • Add an implementation=3 mode for tf.keras.layers.LocallyConnected2D and tf.keras.layers.LocallyConnected1D layers using tf.SparseTensor to store weights, allowing a dramatic speedup for large sparse models.
... (truncated)
Changelog

Sourced from tensorflow's changelog.

Release 1.15.0

This is the last 1.x release for TensorFlow. We do not expect to update the 1.x branch with features, although we will issue patch releases to fix vulnerabilities for at least one year.

Major Features and Improvements

  • As announced, tensorflow pip package will by default include GPU support (same as tensorflow-gpu now) for the platforms we currently have GPU support (Linux and Windows). It will work on machines with and without Nvidia GPUs. tensorflow-gpu will still be available, and CPU-only packages can be downloaded at tensorflow-cpu for users who are concerned about package size.
  • TensorFlow 1.15 contains a complete implementation of the 2.0 API in its compat.v2 module. It contains a copy of the 1.15 main module (without contrib) in the compat.v1 module. TensorFlow 1.15 is able to emulate 2.0 behavior using the enable_v2_behavior() function.
    This enables writing forward compatible code: by explicitly importing either tensorflow.compat.v1 or tensorflow.compat.v2, you can ensure that your code works without modifications against an installation of 1.15 or 2.0.
  • EagerTensor now supports numpy buffer interface for tensors.
  • Add toggles tf.enable_control_flow_v2() and tf.disable_control_flow_v2() for enabling/disabling v2 control flow.
  • Enable v2 control flow as part of tf.enable_v2_behavior() and TF2_BEHAVIOR=1.
  • AutoGraph translates Python control flow into TensorFlow expressions, allowing users to write regular Python inside tf.function-decorated functions. AutoGraph is also applied in functions used with tf.data, tf.distribute and tf.keras APIS.
  • Adds enable_tensor_equality(), which switches the behavior such that:
    • Tensors are no longer hashable.
    • Tensors can be compared with == and !=, yielding a Boolean Tensor with element-wise comparison results. This will be the default behavior in 2.0.

Breaking Changes

  • Tensorflow code now produces 2 different pip packages: tensorflow_core containing all the code (in the future it will contain only the private implementation) and tensorflow which is a virtual pip package doing forwarding to tensorflow_core (and in the future will contain only the public API of tensorflow). We don't expect this to be breaking, unless you were importing directly from the implementation.
  • TensorFlow 1.15 is built using devtoolset7 (GCC7) on Ubuntu 16. This may lead to ABI incompatibilities with extensions built against earlier versions of TensorFlow.
  • Deprecated the use of constraint= and .constraint with ResourceVariable.
  • tf.keras:
    • OMP_NUM_THREADS is no longer used by the default Keras config. To configure the number of threads, use tf.config.threading APIs.
    • tf.keras.model.save_model and model.save now defaults to saving a TensorFlow SavedModel.
    • keras.backend.resize_images (and consequently, keras.layers.Upsampling2D) behavior has changed, a bug in the resizing implementation was fixed.
    • Layers now default to float32, and automatically cast their inputs to the layer's dtype. If you had a model that used float64, it will probably silently use float32 in TensorFlow2, and a warning will be issued that starts with Layer "layer-name" is casting an input tensor from dtype float64 to the layer's dtype of float32. To fix, either set the default dtype to float64 with tf.keras.backend.set_floatx('float64'), or pass dtype='float64' to each of the Layer constructors. See tf.keras.layers.Layer for more information.
    • Some tf.assert_* methods now raise assertions at operation creation time (i.e. when this Python line executes) if the input tensors' values are known at that time, not during the session.run(). When this happens, a noop is returned and the input tensors are marked non-feedable. In other words, if they are used as keys in feed_dict argument to session.run(), an error will be raised. Also, because some assert ops don't make it into the graph, the graph structure changes. A different graph can result in different per-op random seeds when they are not given explicitly (most often).

Bug Fixes and Other Changes

  • tf.estimator:
    • tf.keras.estimator.model_to_estimator now supports exporting to tf.train.Checkpoint format, which allows the saved checkpoints to be compatible with model.load_weights.
    • Fix tests in canned estimators.
    • Expose Head as public API.
    • Fixes critical bugs that help with DenseFeatures usability in TF2
  • tf.data:
    • Promoting unbatch from experimental to core API.
    • Adding support for datasets as inputs to from_tensors and from_tensor_slices and batching and unbatching of nested datasets.
  • tf.keras:
    • tf.keras.estimator.model_to_estimator now supports exporting to tf.train.Checkpoint format, which allows the saved checkpoints to be compatible with model.load_weights.
    • Saving a Keras Model using tf.saved_model.save now saves the list of variables, trainable variables, regularization losses, and the call function.
    • Deprecated tf.keras.experimental.export_saved_model and tf.keras.experimental.function. Please use tf.keras.models.save_model(..., save_format='tf') and tf.keras.models.load_model instead.
    • Add an implementation=3 mode for tf.keras.layers.LocallyConnected2D and tf.keras.layers.LocallyConnected1D layers using tf.SparseTensor to store weights, allowing a dramatic speedup for large sparse models.
    • Enable the Keras compile API experimental_run_tf_function flag by default. This flag enables single training/eval/predict execution path. With this 1. All input types are converted to Dataset. 2. When distribution strategy is not specified this goes through the no-op distribution strategy path. 3. Execution is wrapped in tf.function unless run_eagerly=True is set in compile.
    • Raise error if batch_size argument is used when input is dataset/generator/keras sequence.
  • tf.lite
    • Add GATHER support to NN API delegate.
    • tflite object detection script has a debug mode.
    • Add delegate support for QUANTIZE.
    • Added evaluation script for COCO minival.
    • Add delegate support for QUANTIZED_16BIT_LSTM.
    • Converts hardswish subgraphs into atomic ops.
  • Add support for defaulting the value of cycle_length argument of tf.data.Dataset.interleave to the number of schedulable CPU cores.
... (truncated)
Commits
  • 590d6ee Merge pull request #31861 from tensorflow-jenkins/relnotes-1.15.0rc0-16184
  • b27ac43 Update RELEASE.md
  • 07bf663 Merge pull request #33213 from Intel-tensorflow/mkl-dnn-0.20.6
  • 46f50ff Merge pull request #33262 from tensorflow/ggadde-1-15-cp2
  • 49c154e Merge pull request #33263 from tensorflow/ggadde-1-15-final-version
  • a16adeb Update TensorFlow version to 1.15.0 in preparation for final relase.
  • 8d71a87 Add saving of loaded/trained compatibility models in test and fix a compatibi...
  • 8c48aff [Intel Mkl] Upgrading MKL-DNN to 0.20.6 to fix SGEMM regression
  • 38ea9bb Merge pull request #33120 from tensorflow/perf
  • a8ef0f5 Automated rollback of commit db7e43192d405973c6c50f6e60e831a198bb4a49
  • Additional commits viewable in compare view

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
  • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
  • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
  • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
  • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

You can disable automated security fix PRs for this repo from the Security Alerts page.


This change is Reviewable

@dependabot dependabot bot added the dependencies Pull requests that update a dependency file label Jan 8, 2020
@k8s-ci-robot
Copy link

Hi @dependabot[bot]. Thanks for your PR.

I'm waiting for a kubeflow member to verify that this patch is reasonable to test. If it is, they should reply with /ok-to-test on its own line. Until that is done, I will not automatically test new commits in this PR, but the usual testing commands by org members will still work. Regular contributors should join the org to skip this step.

Once the patch is verified, the new status will be reflected by the ok-to-test label.

I understand the commands that are listed here.

Instructions for interacting with me using PR comments are available here. If you have questions or suggestions related to my behavior, please file an issue against the kubernetes/test-infra repository.

@dependabot dependabot bot force-pushed the dependabot/pip/examples/v1alpha3/NAS-training-containers/RL-cifar10/tensorflow-1.15.0 branch from 1c620b7 to 397ce60 Compare January 8, 2020 12:20
@andreyvelich
Copy link
Member

I test it, this change should be fine.
/cc @johnugeorge
/lgtm

@johnugeorge
Copy link
Member

/approve

@k8s-ci-robot
Copy link

[APPROVALNOTIFIER] This PR is APPROVED

This pull-request has been approved by: johnugeorge

The full list of commands accepted by this bot can be found here.

The pull request process is described here

Needs approval from an approver in each of these files:

Approvers can indicate their approval by writing /approve in a comment
Approvers can cancel approval by writing /approve cancel in a comment

@k8s-ci-robot k8s-ci-robot merged commit 7f7eaff into master Jan 8, 2020
@dependabot dependabot bot deleted the dependabot/pip/examples/v1alpha3/NAS-training-containers/RL-cifar10/tensorflow-1.15.0 branch January 8, 2020 14:45
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
approved dependencies Pull requests that update a dependency file lgtm needs-ok-to-test size/XS
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants