Skip to content

An optimal prefix code used for lossless data compression

Notifications You must be signed in to change notification settings

kweithers/huffman-coding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.

Compression

The technique works by creating a binary tree of nodes. These can be stored in a regular array, the size of which depends on the number of symbols, n {\displaystyle n} n. A node can be either a leaf node or an internal node. Initially, all nodes are leaf nodes, which contain the symbol itself, the weight (frequency of appearance) of the symbol and optionally, a link to a parent node which makes it easy to read the code (in reverse) starting from a leaf node. Internal nodes contain a weight, links to two child nodes and an optional link to a parent node. As a common convention, bit '0' represents following the left child and bit '1' represents following the right child. A finished tree has up to n {\displaystyle n} n leaf nodes and n − 1 {\displaystyle n-1} n-1 internal nodes. A Huffman tree that omits unused symbols produces the most optimal code lengths.

The process begins with the leaf nodes containing the probabilities of the symbol they represent. Then, the process takes the two nodes with smallest probability, and creates a new internal node having these two nodes as children. The weight of the new node is set to the sum of the weight of the children. We then apply the process again, on the new internal node and on the remaining nodes (i.e., we exclude the two leaf nodes), we repeat this process until only one node remains, which is the root of the Huffman tree.

The simplest construction algorithm uses a priority queue where the node with lowest probability is given highest priority:

  1. Create a leaf node for each symbol and add it to the priority queue.
  2. While there is more than one node in the queue:
    • Remove the two nodes of highest priority (lowest probability) from the queue
    • Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes' probabilities.
    • Add the new node to the queue.
  3. The remaining node is the root node and the tree is complete.

Decompression

Generally speaking, the process of decompression is simply a matter of translating the stream of prefix codes to individual byte values, usually by traversing the Huffman tree node by node as each bit is read from the input stream (reaching a leaf node necessarily terminates the search for that particular byte value).

About

An optimal prefix code used for lossless data compression

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published