Skip to content

Commit

Permalink
Add Flyte Callback Handler (#6139) (#6986)
Browse files Browse the repository at this point in the history
Signed-off-by: Samhita Alla <aallasamhita@gmail.com>
Co-authored-by: Samhita Alla <aallasamhita@gmail.com>
  • Loading branch information
hinthornw and samhita-alla committed Jul 3, 2023
1 parent 4468751 commit 314c1ee
Show file tree
Hide file tree
Showing 3 changed files with 521 additions and 0 deletions.
153 changes: 153 additions & 0 deletions docs/extras/ecosystem/integrations/flyte.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
# Flyte

> [Flyte](https://github.com/flyteorg/flyte) is an open-source orchestrator that facilitates building production-grade data and ML pipelines.
> It is built for scalability and reproducibility, leveraging Kubernetes as its underlying platform.
The purpose of this notebook is to demonstrate the integration of a `FlyteCallback` into your Flyte task, enabling you to effectively monitor and track your LangChain experiments.

## Installation & Setup

- Install the Flytekit library by running the command `pip install flytekit`.
- Install the Flytekit-Envd plugin by running the command `pip install flytekitplugins-envd`.
- Install LangChain by running the command `pip install langchain`.
- Install [Docker](https://docs.docker.com/engine/install/) on your system.

## Flyte Tasks

A Flyte [task](https://docs.flyte.org/projects/cookbook/en/latest/auto/core/flyte_basics/task.html) serves as the foundational building block of Flyte.
To execute LangChain experiments, you need to write Flyte tasks that define the specific steps and operations involved.

NOTE: The [getting started guide](https://docs.flyte.org/projects/cookbook/en/latest/index.html) offers detailed, step-by-step instructions on installing Flyte locally and running your initial Flyte pipeline.

First, import the necessary dependencies to support your LangChain experiments.

```python
import os

from flytekit import ImageSpec, task
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import FlyteCallbackHandler
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.schema import HumanMessage
```

Set up the necessary environment variables to utilize the OpenAI API and Serp API:

```python
# Set OpenAI API key
os.environ["OPENAI_API_KEY"] = "<your_openai_api_key>"

# Set Serp API key
os.environ["SERPAPI_API_KEY"] = "<your_serp_api_key>"
```

Replace `<your_openai_api_key>` and `<your_serp_api_key>` with your respective API keys obtained from OpenAI and Serp API.

To guarantee reproducibility of your pipelines, Flyte tasks are containerized.
Each Flyte task must be associated with an image, which can either be shared across the entire Flyte [workflow](https://docs.flyte.org/projects/cookbook/en/latest/auto/core/flyte_basics/basic_workflow.html) or provided separately for each task.

To streamline the process of supplying the required dependencies for each Flyte task, you can initialize an [`ImageSpec`](https://docs.flyte.org/projects/cookbook/en/latest/auto/core/image_spec/image_spec.html) object.
This approach automatically triggers a Docker build, alleviating the need for users to manually create a Docker image.

```python
custom_image = ImageSpec(
name="langchain-flyte",
packages=[
"langchain",
"openai",
"spacy",
"https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.5.0/en_core_web_sm-3.5.0.tar.gz",
"textstat",
"google-search-results",
],
registry="<your-registry>",
)
```

You have the flexibility to push the Docker image to a registry of your preference.
[Docker Hub](https://hub.docker.com/) or [GitHub Container Registry (GHCR)](https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry) is a convenient option to begin with.

Once you have selected a registry, you can proceed to create Flyte tasks that log the LangChain metrics to Flyte Deck.

The following examples demonstrate tasks related to OpenAI LLM, chains and agent with tools:

### LLM

```python
@task(disable_deck=False, container_image=custom_image)
def langchain_llm() -> str:
llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.2,
callbacks=[FlyteCallbackHandler()],
)
return llm([HumanMessage(content="Tell me a joke")]).content
```

### Chain

```python
@task(disable_deck=False, container_image=custom_image)
def langchain_chain() -> list[dict[str, str]]:
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0,
callbacks=[FlyteCallbackHandler()],
)
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(
llm=llm, prompt=prompt_template, callbacks=[FlyteCallbackHandler()]
)
test_prompts = [
{
"title": "documentary about good video games that push the boundary of game design"
},
]
return synopsis_chain.apply(test_prompts)
```

### Agent

```python
@task(disable_deck=False, container_image=custom_image)
def langchain_agent() -> str:
llm = OpenAI(
model_name="gpt-3.5-turbo",
temperature=0,
callbacks=[FlyteCallbackHandler()],
)
tools = load_tools(
["serpapi", "llm-math"], llm=llm, callbacks=[FlyteCallbackHandler()]
)
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
callbacks=[FlyteCallbackHandler()],
verbose=True,
)
return agent.run(
"Who is Leonardo DiCaprio's girlfriend? Could you calculate her current age and raise it to the power of 0.43?"
)
```

These tasks serve as a starting point for running your LangChain experiments within Flyte.

## Execute the Flyte Tasks on Kubernetes

To execute the Flyte tasks on the configured Flyte backend, use the following command:

```bash
pyflyte run --image <your-image> langchain_flyte.py langchain_llm
```

This command will initiate the execution of the `langchain_llm` task on the Flyte backend. You can trigger the remaining two tasks in a similar manner.

The metrics will be displayed on the Flyte UI as follows:

![LangChain LLM](https://ik.imagekit.io/c8zl7irwkdda/Screenshot_2023-06-20_at_1.23.29_PM_MZYeG0dKa.png?updatedAt=1687247642993)
2 changes: 2 additions & 0 deletions langchain/callbacks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from langchain.callbacks.clearml_callback import ClearMLCallbackHandler
from langchain.callbacks.comet_ml_callback import CometCallbackHandler
from langchain.callbacks.file import FileCallbackHandler
from langchain.callbacks.flyte_callback import FlyteCallbackHandler
from langchain.callbacks.human import HumanApprovalCallbackHandler
from langchain.callbacks.infino_callback import InfinoCallbackHandler
from langchain.callbacks.manager import (
Expand Down Expand Up @@ -51,4 +52,5 @@
"get_openai_callback",
"tracing_enabled",
"wandb_tracing_enabled",
"FlyteCallbackHandler",
]
Loading

0 comments on commit 314c1ee

Please sign in to comment.