-
Notifications
You must be signed in to change notification settings - Fork 15.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
323 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,224 @@ | ||
import functools | ||
from importlib import util | ||
from typing import Any, List, Optional, Tuple, Union | ||
|
||
from langchain_core.embeddings import Embeddings | ||
from langchain_core.runnables import Runnable | ||
|
||
_SUPPORTED_PROVIDERS = { | ||
"openai": "langchain_openai", | ||
"azure_openai": "langchain_openai", | ||
"google_vertexai": "langchain_google_vertexai", | ||
"bedrock": "langchain_aws", | ||
"cohere": "langchain_cohere", | ||
"mistralai": "langchain_mistralai", | ||
"huggingface": "langchain_huggingface", | ||
} | ||
|
||
|
||
def _get_provider_list() -> str: | ||
"""Get formatted list of providers and their packages.""" | ||
return "\n".join( | ||
f" - {p}: {pkg.replace('_', '-')}" | ||
for p, pkg in sorted(_SUPPORTED_PROVIDERS.items()) | ||
) | ||
|
||
|
||
def _parse_model_string(model_name: str) -> Tuple[str, str]: | ||
"""Parse a model string into provider and model name components. | ||
The model string should be in the format 'provider:model-name', where provider | ||
is one of the supported providers. | ||
Args: | ||
model_name: A model string in the format 'provider:model-name' | ||
Returns: | ||
A tuple of (provider, model_name) | ||
Examples: | ||
>>> _parse_model_string("openai:text-embedding-3-small") | ||
("openai", "text-embedding-3-small") | ||
>>> _parse_model_string("bedrock:amazon.titan-embed-text-v1") | ||
("bedrock", "amazon.titan-embed-text-v1") | ||
Raises: | ||
ValueError: If the model string is not in the correct format or | ||
the provider is unsupported | ||
""" | ||
if ":" not in model_name: | ||
providers = sorted(_SUPPORTED_PROVIDERS) | ||
raise ValueError( | ||
f"Invalid model format '{model_name}'.\n" | ||
f"Model name must be in format 'provider:model-name'\n" | ||
f"Example valid model strings:\n" | ||
f" - openai:text-embedding-3-small\n" | ||
f" - bedrock:amazon.titan-embed-text-v1\n" | ||
f" - cohere:embed-english-v3.0\n" | ||
f"Supported providers: {providers}" | ||
) | ||
|
||
provider, model = model_name.split(":", 1) | ||
provider = provider.lower().strip() | ||
model = model.strip() | ||
|
||
if provider not in _SUPPORTED_PROVIDERS: | ||
raise ValueError( | ||
f"Provider '{provider}' is not supported.\n" | ||
f"Supported providers and their required packages:\n" | ||
f"{_get_provider_list()}" | ||
) | ||
if not model: | ||
raise ValueError("Model name cannot be empty") | ||
return provider, model | ||
|
||
|
||
def _infer_model_and_provider( | ||
model: str, *, provider: Optional[str] = None | ||
) -> Tuple[str, str]: | ||
if provider is None and ":" in model: | ||
provider, model_name = _parse_model_string(model) | ||
else: | ||
provider = provider | ||
model_name = model | ||
|
||
if not provider: | ||
providers = sorted(_SUPPORTED_PROVIDERS) | ||
raise ValueError( | ||
"Must specify either:\n" | ||
"1. A model string in format 'provider:model-name'\n" | ||
" Example: 'openai:text-embedding-3-small'\n" | ||
"2. Or explicitly set model_provider from: " | ||
f"{providers}" | ||
) | ||
|
||
if provider not in _SUPPORTED_PROVIDERS: | ||
raise ValueError( | ||
f"Provider '{provider}' is not supported.\n" | ||
f"Supported providers and their required packages:\n" | ||
f"{_get_provider_list()}" | ||
) | ||
return provider, model_name | ||
|
||
|
||
def _init_embedding_model_helper( | ||
model: str, *, provider: Optional[str] = None, **kwargs: Any | ||
) -> Embeddings: | ||
"""Initialize an Embeddings model from the model name and provider. | ||
Internal helper function that handles the actual model initialization. | ||
Use init_embedding_model() instead of calling this directly. | ||
""" | ||
provider, model_name = _infer_model_and_provider(model, provider=provider) | ||
pkg = _SUPPORTED_PROVIDERS[provider] | ||
_check_pkg(pkg) | ||
|
||
if provider == "openai": | ||
from langchain_openai import OpenAIEmbeddings | ||
|
||
return OpenAIEmbeddings(model=model_name, **kwargs) | ||
elif provider == "azure_openai": | ||
from langchain_openai import AzureOpenAIEmbeddings | ||
|
||
return AzureOpenAIEmbeddings(model=model_name, **kwargs) | ||
elif provider == "google_vertexai": | ||
from langchain_google_vertexai import VertexAIEmbeddings | ||
|
||
return VertexAIEmbeddings(model=model_name, **kwargs) | ||
elif provider == "bedrock": | ||
from langchain_aws import BedrockEmbeddings | ||
|
||
return BedrockEmbeddings(model_id=model_name, **kwargs) | ||
elif provider == "cohere": | ||
from langchain_cohere import CohereEmbeddings | ||
|
||
return CohereEmbeddings(model=model_name, **kwargs) | ||
elif provider == "mistralai": | ||
from langchain_mistralai import MistralAIEmbeddings | ||
|
||
return MistralAIEmbeddings(model=model_name, **kwargs) | ||
elif provider == "huggingface": | ||
from langchain_huggingface import HuggingFaceEmbeddings | ||
|
||
return HuggingFaceEmbeddings(model_name=model_name, **kwargs) | ||
else: | ||
raise ValueError( | ||
f"Provider '{provider}' is not supported.\n" | ||
f"Supported providers and their required packages:\n" | ||
f"{_get_provider_list()}" | ||
) | ||
|
||
|
||
@functools.lru_cache | ||
def _check_pkg(pkg: str) -> None: | ||
"""Check if a package is installed.""" | ||
if not util.find_spec(pkg): | ||
raise ImportError( | ||
f"Could not import {pkg} python package. " | ||
f"Please install it with `pip install {pkg}`" | ||
) | ||
|
||
|
||
def embedding_model( | ||
model: str, | ||
*, | ||
model_provider: Optional[str] = None, | ||
**kwargs: Any, | ||
) -> Union[Embeddings, Runnable[Any, List[float]]]: | ||
f"""Initialize an embeddings model from a model name and optional provider. | ||
This function creates an embeddings model instance from either: | ||
1. A model string in the format 'provider:model-name' | ||
2. A model name and explicit provider | ||
Args: | ||
model: Name of the model to use. Can be either: | ||
- A model string like "openai:text-embedding-3-small" | ||
- Just the model name if model_provider is specified | ||
model_provider: Optional explicit provider name. If not specified, | ||
will attempt to parse from the model string. Supported providers | ||
and their required packages: | ||
{_get_provider_list()} | ||
**kwargs: Additional model-specific parameters passed to the embedding model. | ||
These vary by provider, see the provider-specific documentation for details. | ||
Returns: | ||
An Embeddings instance that can generate embeddings for text. | ||
Raises: | ||
ValueError: If the model provider is not supported or cannot be determined | ||
ImportError: If the required provider package is not installed | ||
Examples: | ||
>>> # Using a model string | ||
>>> model = init_embedding_model("openai:text-embedding-3-small") | ||
>>> model.embed_query("Hello, world!") | ||
>>> # Using explicit provider | ||
>>> model = init_embedding_model( | ||
... model="text-embedding-3-small", | ||
... model_provider="openai" | ||
... ) | ||
>>> # With additional parameters | ||
>>> model = init_embedding_model( | ||
... "openai:text-embedding-3-small", | ||
... api_key="sk-..." | ||
... ) | ||
""" | ||
if not model: | ||
providers = sorted(_SUPPORTED_PROVIDERS.keys()) | ||
raise ValueError( | ||
"Must specify model name. " | ||
f"Supported providers are: {', '.join(providers)}" | ||
) | ||
|
||
return _init_embedding_model_helper(model, model_provider=model_provider, **kwargs) | ||
|
||
|
||
# This is for backwards compatibility | ||
__all__ = ["Embeddings"] | ||
__all__ = [ | ||
"embedding_model", | ||
"Embeddings", # This one is for backwards compatibility | ||
] |
Empty file.
44 changes: 44 additions & 0 deletions
44
libs/langchain/tests/integration_tests/embeddings/test_base.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
"""Test embeddings base module.""" | ||
|
||
import importlib | ||
|
||
import pytest | ||
from langchain_core.embeddings import Embeddings | ||
|
||
from langchain.embeddings.base import _SUPPORTED_PROVIDERS, embedding_model | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"provider, model", | ||
[ | ||
("openai", "text-embedding-3-large"), | ||
("google_vertexai", "text-embedding-gecko@003"), | ||
("bedrock", "amazon.titan-embed-text-v1"), | ||
("cohere", "embed-english-v2.0"), | ||
], | ||
) | ||
async def test_init_embedding_model(provider: str, model: str) -> None: | ||
package = _SUPPORTED_PROVIDERS[provider] | ||
try: | ||
importlib.import_module(package) | ||
except ImportError: | ||
pytest.skip(f"Package {package} is not installed") | ||
|
||
model_colon = embedding_model(f"{provider}:{model}") | ||
assert isinstance(model_colon, Embeddings) | ||
|
||
model_explicit = embedding_model( | ||
model=model, | ||
model_provider=provider, | ||
) | ||
assert isinstance(model_explicit, Embeddings) | ||
|
||
text = "Hello world" | ||
|
||
embedding_colon = await model_colon.aembed_query(text) | ||
assert isinstance(embedding_colon, list) | ||
assert all(isinstance(x, float) for x in embedding_colon) | ||
|
||
embedding_explicit = await model_explicit.aembed_query(text) | ||
assert isinstance(embedding_explicit, list) | ||
assert all(isinstance(x, float) for x in embedding_explicit) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
"""Test embeddings base module.""" | ||
|
||
import pytest | ||
|
||
from langchain.embeddings.base import _SUPPORTED_PROVIDERS, _parse_model_string | ||
|
||
|
||
def test_parse_model_string() -> None: | ||
"""Test parsing model strings into provider and model components.""" | ||
assert _parse_model_string("openai:text-embedding-3-small") == ( | ||
"openai", | ||
"text-embedding-3-small", | ||
) | ||
assert _parse_model_string("bedrock:amazon.titan-embed-text-v1") == ( | ||
"bedrock", | ||
"amazon.titan-embed-text-v1", | ||
) | ||
assert _parse_model_string("huggingface:BAAI/bge-base-en:v1.5") == ( | ||
"huggingface", | ||
"BAAI/bge-base-en:v1.5", | ||
) | ||
|
||
|
||
def test_parse_model_string_errors() -> None: | ||
"""Test error cases for model string parsing.""" | ||
with pytest.raises(ValueError, match="Model name must be"): | ||
_parse_model_string("just-a-model-name") | ||
|
||
with pytest.raises(ValueError, match="Invalid model format "): | ||
_parse_model_string("") | ||
|
||
with pytest.raises(ValueError, match="is not supported"): | ||
_parse_model_string(":model-name") | ||
|
||
with pytest.raises(ValueError, match="Model name cannot be empty"): | ||
_parse_model_string("openai:") | ||
|
||
with pytest.raises( | ||
ValueError, match="Provider 'invalid-provider' is not supported" | ||
): | ||
_parse_model_string("invalid-provider:model-name") | ||
|
||
for provider in _SUPPORTED_PROVIDERS: | ||
with pytest.raises(ValueError, match=f"{provider}"): | ||
_parse_model_string("invalid-provider:model-name") | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"provider", | ||
sorted(_SUPPORTED_PROVIDERS.keys()), | ||
) | ||
def test_supported_providers_package_names(provider: str) -> None: | ||
"""Test that all supported providers have valid package names.""" | ||
package = _SUPPORTED_PROVIDERS[provider] | ||
assert "-" not in package | ||
assert package.startswith("langchain_") | ||
assert package.islower() |