Skip to content

Commit

Permalink
docs: Added Semantic Cache Example with BedrockChat using Bedrock Emb…
Browse files Browse the repository at this point in the history
…edding… (#22190)

…s and Opensearch Semantic Cache

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
  • Loading branch information
nareshnagpal06 and baskaryan authored Jun 4, 2024
1 parent 3796672 commit 9b45374
Showing 1 changed file with 71 additions and 0 deletions.
71 changes: 71 additions & 0 deletions docs/docs/integrations/chat/bedrock.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,77 @@
"for chunk in chat.stream(messages):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "markdown",
"id": "c36575b3",
"metadata": {},
"source": [
"### LLM Caching with OpenSearch Semantic Cache\n",
"\n",
"Use OpenSearch as a semantic cache to cache prompts and responses and evaluate hits based on semantic similarity.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "375d4e56",
"metadata": {},
"outputs": [],
"source": [
"from langchain.globals import set_llm_cache\n",
"from langchain_aws import BedrockEmbeddings, ChatBedrock\n",
"from langchain_community.cache import OpenSearchSemanticCache\n",
"from langchain_core.messages import HumanMessage\n",
"\n",
"bedrock_embeddings = BedrockEmbeddings(\n",
" model_id=\"amazon.titan-embed-text-v1\", region_name=\"us-east-1\"\n",
")\n",
"\n",
"chat = ChatBedrock(\n",
" model_id=\"anthropic.claude-3-haiku-20240307-v1:0\", model_kwargs={\"temperature\": 0.5}\n",
")\n",
"\n",
"# Enable LLM cache. Make sure OpenSearch is set up and running. Update URL accordingly.\n",
"set_llm_cache(\n",
" OpenSearchSemanticCache(\n",
" opensearch_url=\"http://localhost:9200\", embedding=bedrock_embeddings\n",
" )\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bb5d25bb",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# The first time, it is not yet in cache, so it should take longer\n",
"messages = [HumanMessage(content=\"tell me about Amazon Bedrock\")]\n",
"response_text = chat.invoke(messages)\n",
"\n",
"print(response_text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6cfb3086",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# The second time, while not a direct hit, the question is semantically similar to the original question,\n",
"# so it uses the cached result!\n",
"\n",
"messages = [HumanMessage(content=\"what is amazon bedrock\")]\n",
"response_text = chat.invoke(messages)\n",
"\n",
"print(response_text)"
]
}
],
"metadata": {
Expand Down

0 comments on commit 9b45374

Please sign in to comment.