Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs[minor]: Update cohere embeddings docs #6359

Merged
merged 11 commits into from
Aug 5, 2024
Merged
304 changes: 304 additions & 0 deletions docs/core_docs/docs/integrations/text_embedding/cohere.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,304 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"sidebar_label: Cohere\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# CohereEmbeddings\n",
"\n",
"This will help you get started with CohereEmbeddings [embedding models](/docs/concepts#embedding-models) using LangChain. For detailed documentation on `CohereEmbeddings` features and configuration options, please refer to the [API reference](https://api.js.langchain.com/classes/langchain_cohere.CohereEmbeddings.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | [Py support](https://python.langchain.com/docs/integrations/text_embedding/cohere/) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: |\n",
"| [CohereEmbeddings](https://api.js.langchain.com/classes/langchain_cohere.CohereEmbeddings.html) | [@langchain/cohere](https://api.js.langchain.com/modules/langchain_cohere.html) | ❌ | ✅ | ![NPM - Downloads](https://img.shields.io/npm/dm/@langchain/cohere?style=flat-square&label=%20&) | ![NPM - Version](https://img.shields.io/npm/v/@langchain/cohere?style=flat-square&label=%20&) |\n",
"\n",
"## Setup\n",
"\n",
"To access Cohere embedding models you'll need to create a Cohere account, get an API key, and install the `@langchain/cohere` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [cohere.com](https://cohere.com) to sign up to `Cohere` and generate an API key. Once you've done this set the `COHERE_API_KEY` environment variable:\n",
"\n",
"```bash\n",
"export COHERE_API_KEY=\"your-api-key\"\n",
"```\n",
"\n",
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:\n",
"\n",
"```bash\n",
"# export LANGCHAIN_TRACING_V2=\"true\"\n",
"# export LANGCHAIN_API_KEY=\"your-api-key\"\n",
"```\n",
"\n",
"### Installation\n",
"\n",
"The LangChain CohereEmbeddings integration lives in the `@langchain/cohere` package:\n",
"\n",
"```{=mdx}\n",
"import IntegrationInstallTooltip from \"@mdx_components/integration_install_tooltip.mdx\";\n",
"import Npm2Yarn from \"@theme/Npm2Yarn\";\n",
"\n",
"<IntegrationInstallTooltip></IntegrationInstallTooltip>\n",
"\n",
"<Npm2Yarn>\n",
" @langchain/cohere\n",
"</Npm2Yarn>\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"import { CohereEmbeddings } from \"@langchain/cohere\";\n",
"\n",
"const embeddings = new CohereEmbeddings({\n",
" apiKey: \"YOUR-API-KEY\", // In Node.js defaults to process.env.COHERE_API_KEY\n",
" batchSize: 48, // Default value if omitted is 48. Max value is 96\n",
" model: \"embed-english-v3.0\",\n",
"});"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the [working with external knowledge tutorials](/docs/tutorials/#working-with-external-knowledge).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document using the demo [`MemoryVectorStore`](/docs/integrations/vectorstores/memory)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d817716b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LangChain is the framework for building context-aware reasoning applications\n"
]
}
],
"source": [
"// Create a vector store with a sample text\n",
"import { MemoryVectorStore } from \"langchain/vectorstores/memory\";\n",
"\n",
"const text = \"LangChain is the framework for building context-aware reasoning applications\";\n",
"\n",
"const vectorstore = await MemoryVectorStore.fromDocuments(\n",
" [{ pageContent: text, metadata: {} }],\n",
" embeddings,\n",
");\n",
"\n",
"// Use the vector store as a retriever that returns a single document\n",
"const retriever = vectorstore.asRetriever(1);\n",
"\n",
"// Retrieve the most similar text\n",
"const retrievedDocuments = await retriever.invoke(\"What is LangChain?\");\n",
"\n",
"retrievedDocuments[0].pageContent;"
]
},
{
"cell_type": "markdown",
"id": "e02b9855",
"metadata": {},
"source": [
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embedDocument(...)` and `embeddings.embedQuery(...)` to create embeddings for the text(s) used in `fromDocuments` and the retriever's `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed queries for search with `embedQuery`. This generates a vector representation specific to the query:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[\n",
" -0.022979736, -0.030212402, -0.08886719, -0.08569336, 0.007030487,\n",
" -0.0010671616, -0.033813477, 0.08843994, 0.0119018555, 0.049926758,\n",
" -0.03616333, 0.007408142, 0.00034809113, -0.005744934, -0.016021729,\n",
" -0.015296936, -0.0011606216, -0.02458191, -0.044006348, -0.0335083,\n",
" 0.024658203, -0.051086426, 0.0020427704, 0.06298828, 0.020507812,\n",
" 0.037475586, 0.05117798, 0.0059814453, 0.025360107, 0.0060577393,\n",
" 0.02255249, -0.070129395, 0.024017334, 0.022766113, -0.042755127,\n",
" -0.024673462, -0.0236969, -0.0073623657, 0.002161026, 0.011329651,\n",
" 0.038330078, -0.03050232, 0.0022201538, -0.007911682, -0.0023536682,\n",
" 0.029937744, -0.027297974, -0.064086914, 0.027267456, 0.016738892,\n",
" 0.0028972626, 0.015510559, -0.01725769, 0.011497498, -0.012954712,\n",
" 0.002380371, -0.03366089, -0.02746582, 0.014022827, 0.04196167,\n",
" 0.007698059, -0.027069092, 0.025405884, -0.029815674, 0.013298035,\n",
" 0.01737976, 0.07269287, 0.017822266, 0.0012550354, -0.009597778,\n",
" -0.02961731, 0.0049057007, 0.01965332, -0.009994507, -0.019561768,\n",
" -0.004764557, 0.019317627, -0.0045433044, 0.031143188, -0.018188477,\n",
" -0.0026893616, 0.0050964355, -0.044189453, 0.02029419, -0.019088745,\n",
" 0.02166748, -0.011657715, -0.025405884, -0.028030396, -0.0051460266,\n",
" -0.010818481, -0.000364542, -0.028686523, 0.015029907, 0.0013790131,\n",
" -0.0069770813, -0.030639648, -0.051208496, 0.005279541, -0.0109939575\n",
"]\n"
]
}
],
"source": [
"const singleVector = await embeddings.embedQuery(text);\n",
"\n",
"console.log(singleVector.slice(0, 100));"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts for indexing with `embedDocuments`. The internals used for this method may (but do not have to) differ from embedding queries:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[\n",
" -0.028869629, -0.030410767, -0.099121094, -0.07116699, -0.012748718,\n",
" -0.0059432983, -0.04360962, 0.07965088, -0.027114868, 0.057403564,\n",
" -0.013549805, 0.014480591, 0.021697998, -0.026870728, 0.0071983337,\n",
" -0.0099105835, -0.0034332275, -0.026031494, -0.05206299, -0.045288086,\n",
" 0.027450562, -0.060333252, -0.019210815, 0.039794922, 0.0055351257,\n",
" 0.046325684, 0.017837524, -0.012619019, 0.023147583, -0.008201599,\n",
" 0.022155762, -0.035888672, 0.016921997, 0.027679443, -0.023605347,\n",
" -0.0022029877, -0.025253296, 0.013076782, 0.0049705505, -0.0024280548,\n",
" 0.021957397, -0.008644104, -0.00004029274, -0.003501892, -0.012641907,\n",
" 0.01600647, -0.014312744, -0.037841797, 0.011764526, -0.019622803,\n",
" -0.01928711, -0.017044067, -0.017547607, 0.028533936, -0.019073486,\n",
" -0.0061073303, -0.024520874, 0.01638794, 0.017852783, -0.0013303757,\n",
" -0.023040771, -0.01713562, 0.027786255, -0.02583313, 0.03060913,\n",
" 0.00013923645, 0.01977539, 0.025283813, -0.00068569183, 0.032806396,\n",
" -0.021392822, -0.016174316, 0.016464233, 0.006023407, -0.0025043488,\n",
" -0.033813477, 0.023269653, 0.012329102, 0.030334473, 0.014419556,\n",
" -0.026245117, -0.018356323, -0.016433716, 0.022628784, -0.024108887,\n",
" 0.02897644, -0.017105103, -0.009208679, -0.015541077, -0.020004272,\n",
" -0.005153656, 0.03741455, -0.050750732, 0.012176514, -0.017501831,\n",
" -0.014503479, 0.0052223206, -0.03250122, 0.008666992, -0.015823364\n",
"]\n",
"[\n",
" -0.047332764, -0.049957275, -0.07458496, -0.034332275, -0.057922363,\n",
" -0.0112838745, -0.06994629, 0.06347656, -0.03326416, 0.019897461,\n",
" 0.0103302, 0.04660034, -0.059753418, -0.027511597, 0.012245178,\n",
" -0.03164673, -0.010215759, -0.00687027, -0.03314209, -0.019866943,\n",
" 0.008399963, -0.042144775, -0.03781128, 0.025970459, 0.007335663,\n",
" 0.04107666, -0.015991211, 0.0158844, -0.008483887, -0.008399963,\n",
" 0.01777649, -0.01109314, 0.01864624, 0.014328003, -0.005264282,\n",
" 0.077697754, 0.017684937, 0.0020427704, 0.032470703, -0.0029354095,\n",
" 0.003063202, 0.0008301735, 0.016281128, -0.005897522, -0.023254395,\n",
" 0.004043579, -0.021987915, -0.015419006, 0.0009803772, 0.044677734,\n",
" -0.0045814514, 0.0039901733, -0.019058228, 0.063964844, -0.012496948,\n",
" -0.027755737, 0.01574707, -0.03781128, 0.0038909912, -0.00002193451,\n",
" 0.00013685226, 0.027832031, 0.015182495, -0.008590698, 0.03933716,\n",
" -0.0020141602, -0.050567627, 0.02017212, 0.020523071, 0.07287598,\n",
" 0.0031375885, -0.05227661, -0.01838684, -0.0019626617, -0.0039482117,\n",
" 0.02494812, 0.0009508133, 0.008583069, 0.02923584, 0.028198242,\n",
" -0.030334473, -0.014076233, -0.017990112, 0.0026245117, -0.017150879,\n",
" 0.004497528, -0.00365448, -0.0012168884, 0.011741638, 0.012886047,\n",
" 0.00084400177, 0.060638428, -0.024002075, 0.022415161, -0.015823364,\n",
" -0.0026760101, 0.028625488, 0.041015625, 0.006893158, -0.01902771\n",
"]\n"
]
}
],
"source": [
"const text2 = \"LangGraph is a library for building stateful, multi-actor applications with LLMs\";\n",
"\n",
"const vectors = await embeddings.embedDocuments([text, text2]);\n",
"\n",
"console.log(vectors[0].slice(0, 100));\n",
"console.log(vectors[1].slice(0, 100));"
]
},
{
"cell_type": "markdown",
"id": "8938e581",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all CohereEmbeddings features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_cohere.CohereEmbeddings.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "TypeScript",
"language": "typescript",
"name": "tslab"
},
"language_info": {
"codemirror_mode": {
"mode": "typescript",
"name": "javascript",
"typescript": true
},
"file_extension": ".ts",
"mimetype": "text/typescript",
"name": "typescript",
"version": "3.7.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
14 changes: 0 additions & 14 deletions docs/core_docs/docs/integrations/text_embedding/cohere.mdx

This file was deleted.

Loading