Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add Parse JSON component #3167

Merged
merged 5 commits into from
Sep 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion poetry.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -107,6 +107,7 @@ spider-client = "^0.0.27"
nltk = "^3.9.1"
bson = "^0.5.10"
lark = "^1.2.2"
jq = "^1.8.0"


[tool.poetry.group.dev.dependencies]
Expand Down
74 changes: 74 additions & 0 deletions src/backend/base/langflow/components/helpers/ParseJSONData.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
import json
from json import JSONDecodeError

import jq
from json_repair import repair_json

from langflow.custom import Component
from langflow.inputs import HandleInput, MessageTextInput
from langflow.io import Output
from langflow.schema import Data
from langflow.schema.message import Message


class ParseJSONDataComponent(Component):
display_name = "Parse JSON"
description = "Convert and extract JSON fields."
icon = "braces"
name = "ParseJSONData"

inputs = [
HandleInput(
name="input_value",
display_name="Input",
info="Data object to filter.",
required=True,
input_types=["Message", "Data"],
),
MessageTextInput(
name="query",
display_name="JQ Query",
info="JQ Query to filter the data. The input is always a JSON list.",
required=True,
),
]

outputs = [
Output(display_name="Filtered Data", name="filtered_data", method="filter_data"),
]

def _parse_data(self, input_value) -> str:
if isinstance(input_value, Message) and isinstance(input_value.text, str):
return input_value.text
if isinstance(input_value, Data):
return json.dumps(input_value.data)
return str(input_value)

def filter_data(self) -> list[Data]:
to_filter = self.input_value
if not to_filter:
return []
if isinstance(to_filter, list):
to_filter = [self._parse_data(f) for f in to_filter]
else:
to_filter = [self._parse_data(to_filter)]

to_filter = [repair_json(f) for f in to_filter]
to_filter_as_dict = []
for f in to_filter:
try:
to_filter_as_dict.append(json.loads(f))
except JSONDecodeError:
try:
to_filter_as_dict.append(json.loads(repair_json(f)))
except JSONDecodeError as e:
raise ValueError(f"Invalid JSON: {e}")

full_filter_str = json.dumps(to_filter_as_dict)

print("to_filter: ", to_filter)

results = jq.compile(self.query).input_text(full_filter_str).all()
print("results: ", results)
docs = [Data(data=value) if isinstance(value, dict) else Data(text=str(value)) for value in results]
return docs
Original file line number Diff line number Diff line change
Expand Up @@ -414,7 +414,7 @@
"show": true,
"title_case": false,
"type": "code",
"value": "from langflow.base.io.chat import ChatComponent\nfrom langflow.inputs import BoolInput\nfrom langflow.io import DropdownInput, MessageTextInput, Output\nfrom langflow.memory import store_message\nfrom langflow.schema.message import Message\nfrom langflow.utils.constants import MESSAGE_SENDER_NAME_AI, MESSAGE_SENDER_USER, MESSAGE_SENDER_AI\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n icon = \"ChatOutput\"\n name = \"ChatOutput\"\n\n inputs = [\n MessageTextInput(\n name=\"input_value\",\n display_name=\"Text\",\n info=\"Message to be passed as output.\",\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n ]\n outputs = [\n Output(display_name=\"Message\", name=\"message\", method=\"message_response\"),\n ]\n\n def message_response(self) -> Message:\n message = Message(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n )\n if (\n self.session_id\n and isinstance(message, Message)\n and isinstance(message.text, str)\n and self.should_store_message\n ):\n store_message(\n message,\n flow_id=self.graph.flow_id,\n )\n self.message.value = message\n\n self.status = message\n return message\n"
"value": "from langflow.base.io.chat import ChatComponent\nfrom langflow.inputs import BoolInput\nfrom langflow.io import DropdownInput, MessageTextInput, Output\nfrom langflow.memory import store_message\nfrom langflow.schema.message import Message\nfrom langflow.utils.constants import MESSAGE_SENDER_AI, MESSAGE_SENDER_NAME_AI, MESSAGE_SENDER_USER\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n icon = \"ChatOutput\"\n name = \"ChatOutput\"\n\n inputs = [\n MessageTextInput(\n name=\"input_value\",\n display_name=\"Text\",\n info=\"Message to be passed as output.\",\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n ]\n outputs = [\n Output(display_name=\"Message\", name=\"message\", method=\"message_response\"),\n ]\n\n def message_response(self) -> Message:\n message = Message(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n )\n if (\n self.session_id\n and isinstance(message, Message)\n and isinstance(message.text, str)\n and self.should_store_message\n ):\n store_message(\n message,\n flow_id=self.graph.flow_id,\n )\n self.message.value = message\n\n self.status = message\n return message\n"
},
"data_template": {
"_input_type": "MessageTextInput",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -653,7 +653,7 @@
"show": true,
"title_case": false,
"type": "code",
"value": "from langflow.base.io.chat import ChatComponent\nfrom langflow.inputs import BoolInput\nfrom langflow.io import DropdownInput, MessageTextInput, Output\nfrom langflow.memory import store_message\nfrom langflow.schema.message import Message\nfrom langflow.utils.constants import MESSAGE_SENDER_NAME_AI, MESSAGE_SENDER_USER, MESSAGE_SENDER_AI\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n icon = \"ChatOutput\"\n name = \"ChatOutput\"\n\n inputs = [\n MessageTextInput(\n name=\"input_value\",\n display_name=\"Text\",\n info=\"Message to be passed as output.\",\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n ]\n outputs = [\n Output(display_name=\"Message\", name=\"message\", method=\"message_response\"),\n ]\n\n def message_response(self) -> Message:\n message = Message(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n )\n if (\n self.session_id\n and isinstance(message, Message)\n and isinstance(message.text, str)\n and self.should_store_message\n ):\n store_message(\n message,\n flow_id=self.graph.flow_id,\n )\n self.message.value = message\n\n self.status = message\n return message\n"
"value": "from langflow.base.io.chat import ChatComponent\nfrom langflow.inputs import BoolInput\nfrom langflow.io import DropdownInput, MessageTextInput, Output\nfrom langflow.memory import store_message\nfrom langflow.schema.message import Message\nfrom langflow.utils.constants import MESSAGE_SENDER_AI, MESSAGE_SENDER_NAME_AI, MESSAGE_SENDER_USER\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n icon = \"ChatOutput\"\n name = \"ChatOutput\"\n\n inputs = [\n MessageTextInput(\n name=\"input_value\",\n display_name=\"Text\",\n info=\"Message to be passed as output.\",\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n ]\n outputs = [\n Output(display_name=\"Message\", name=\"message\", method=\"message_response\"),\n ]\n\n def message_response(self) -> Message:\n message = Message(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n )\n if (\n self.session_id\n and isinstance(message, Message)\n and isinstance(message.text, str)\n and self.should_store_message\n ):\n store_message(\n message,\n flow_id=self.graph.flow_id,\n )\n self.message.value = message\n\n self.status = message\n return message\n"
},
"data_template": {
"_input_type": "MessageTextInput",
Expand Down
Original file line number Diff line number Diff line change
@@ -1,14 +1,11 @@
import os
from typing import List

from astrapy.db import AstraDB
import pytest

from langflow.components.embeddings import OpenAIEmbeddingsComponent
from langflow.custom import Component
from langflow.inputs import StrInput
from langflow.template import Output
from tests.api_keys import get_astradb_application_token, get_astradb_api_endpoint, get_openai_api_key
from tests.integration.components.mock_components import TextToData
from tests.integration.utils import ComponentInputHandle
from langchain_core.documents import Document

Expand Down Expand Up @@ -70,14 +67,6 @@ async def test_base(astradb_client: AstraDB):
assert astradb_client.collection(BASIC_COLLECTION)


class TextToData(Component):
inputs = [StrInput(name="text_data", is_list=True)]
outputs = [Output(name="data", display_name="Data", method="create_data")]

def create_data(self) -> List[Data]:
return [Data(text=t) for t in self.text_data]


@pytest.mark.api_key_required
@pytest.mark.asyncio
async def test_astra_embeds_and_search():
Expand All @@ -93,7 +82,7 @@ async def test_astra_embeds_and_search():
"number_of_results": 1,
"search_input": "test1",
"ingest_data": ComponentInputHandle(
clazz=TextToData, inputs={"text_data": ["test1", "test2"]}, output_name="data"
clazz=TextToData, inputs={"text_data": ["test1", "test2"]}, output_name="from_text"
),
"embedding": ComponentInputHandle(
clazz=OpenAIEmbeddingsComponent,
Expand Down
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import pytest

from langflow.components.helpers.ParseJSONData import ParseJSONDataComponent
from langflow.components.inputs import ChatInput
from langflow.schema import Data
from tests.integration.components.mock_components import TextToData
from tests.integration.utils import run_single_component, ComponentInputHandle


@pytest.mark.asyncio
async def test_from_data():
outputs = await run_single_component(
ParseJSONDataComponent,
inputs={
"input_value": ComponentInputHandle(
clazz=TextToData, inputs={"text_data": ['{"key":"value1"}'], "is_json": True}, output_name="from_text"
),
"query": ".[0].key",
},
)
assert outputs["filtered_data"] == [Data(text="value1")]

outputs = await run_single_component(
ParseJSONDataComponent,
inputs={
"input_value": ComponentInputHandle(
clazz=TextToData,
inputs={"text_data": ['{"key":[{"field1": 1, "field2": 2}]}'], "is_json": True},
output_name="from_text",
),
"query": ".[0].key.[0].field2",
},
)
assert outputs["filtered_data"] == [Data(text="2")]


@pytest.mark.asyncio
async def test_from_message():
outputs = await run_single_component(
ParseJSONDataComponent,
inputs={
"input_value": ComponentInputHandle(clazz=ChatInput, inputs={}, output_name="message"),
"query": ".[0].key",
},
run_input="{'key':'value1'}",
)
assert outputs["filtered_data"] == [Data(text="value1")]

outputs = await run_single_component(
ParseJSONDataComponent,
inputs={
"input_value": ComponentInputHandle(clazz=ChatInput, inputs={}, output_name="message"),
"query": ".[0].key.[0].field2",
},
run_input='{"key":[{"field1": 1, "field2": 2}]}',
)
assert outputs["filtered_data"] == [Data(text="2")]
25 changes: 25 additions & 0 deletions src/backend/tests/integration/components/mock_components.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
import json
from typing import List

from langflow.custom import Component
from langflow.inputs import StrInput, BoolInput
from langflow.schema import Data
from langflow.template import Output


class TextToData(Component):
inputs = [
StrInput(name="text_data", is_list=True),
BoolInput(name="is_json", info="Parse text_data as json and fill the data object."),
]
outputs = [
Output(name="from_text", display_name="From text", method="create_data"),
]

def _to_data(self, text: str) -> Data:
if self.is_json:
return Data(data=json.loads(text))
return Data(text=text)

def create_data(self) -> List[Data]:
return [self._to_data(t) for t in self.text_data]