Skip to content

Configuration as Code framework based on protobuf and Starlark

License

Notifications You must be signed in to change notification settings

lazcamus/protoconf

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Protoconf

logo

codify configuration, instant delivery

Test Release codecov

Introduction

Modern services are comprised of many dynamic variables, that need to be changed regularly. Today, the process is unstructured and error prone. From ML model variables, kill switches, gradual rollout configuration, A/B experiment configuration and more - developers want their code to allow to be configured to the finer details.

Protoconf is a modern approach to software configuration, inspired by Facebook's Configerator.

Using Protoconf enables:

  • Code review for configuration changes Enables the battle tested flow of pull-request & code-review. Configuration auditing out of the box (who did what, when?). The repository is the source of truth for the configuration deployed to production.
  • No service restart required to pick up changes Instant delivery of configuration updates. Encourages writing software that doesn't know downtime.
  • Clear representation of complex configuration Write configuration in Starlark (a Python dialect), no more copying & pasting from huge JSON files.
  • Automated validation Config follows a fully-typed (Protobuf) schema. This allows writing validation code in Starlark, to verify your configuration before it is committed.

Configuration update flow

How this looks from the service's eyes

This is roughly how configuration is consumed by a service. This paradigm encourages you to write software that can reconfigure itself in runtime rather than require a restart:

As Protoconf uses Protobuf and gRPC, it supports delivering configuration to all major languages. See also: Protobuf overview.

Quick start

Step by step instructions to start developing with Protoconf, with an example from an imaginary Python web crawler service. See full example under examples/.

  1. Install the protoconf binary (see build from source)

  2. Write a Protobuf schema under protoconf/src/(syntax guide https://developers.google.com/protocol-buffers/docs/proto3)

    1. For example: protoconf/src/crawler/crawler.proto
    syntax = "proto3";
    
    message Crawler {
      string user_agent = 1;
      int32 http_timeout = 2;
      bool follow_redirects = 3;
    }
    
    message CrawlerService {
      repeated Crawler crawlers = 1;
      enum AdminPermission {
        READ_WRITE = 0;
        GOD_MODE = 1;
      }
      map<string, AdminPermission> admins = 2;
      int32 log_level = 3;
    }
    1. Pro tip: adding fields to an existing schema? Don't worry, Protobuf is backward and forward compatible (https://en.wikipedia.org/wiki/Protocol_Buffers)
  3. Write validators (optional)

    1. Write a Starlark file alongside the .proto file, with a .proto-validator suffix
    2. For example: protoconf/src/crawler/crawler.proto-validator
    load("crawler.proto", "Crawler", "CrawlerService")
    
    def test_crawlers_not_empty(cs):
        if len(cs.crawlers) < 1:
            fail("Crawlers can't be empty")
    
    add_validator(CrawlerService, test_crawlers_not_empty)
    
    def test_http_timeout(c):
        MIN_TIMEOUT = 10
        if c.http_timeout < MIN_TIMEOUT:
            fail("Crawler HTTP timeout must be at least %d, got %d" % (MIN_TIMEOUT, c.http_timeout))
    
    add_validator(Crawler, test_http_timeout)
  4. Write a config

    1. A Starlark .pconf file. Your code can be modular, export functions (ideally in .pinc files), and build a complete custom stack for your configuration needs.

    2. For example: protoconf/src/crawler/text_crawler.pconf

      load("crawler.proto", "Crawler", "CrawlerService")
      
      def default_crawler():
          return Crawler(user_agent="Linux", http_timeout=30)
      
      def main():
          crawlers = []
      
          for i in range(3):
              crawler = default_crawler()
              crawler.http_timeout = 30 + 30*i
                  if i == 0:
                      crawler.follow_redirects = True
              crawlers.append(crawler)
      
          admins = {'superuser': CrawlerService.AdminPermission.GOD_MODE}
          return CrawlerService(crawlers=crawlers, admins=admins, log_level=2)
    3. Compile with protoconf compile, this will create a materialized config file under protoconf/materialized_configs/

    4. For example: protoconf compile protoconf/ crawler/text/crawler will create protoconf/materialized_config/crawler/text_crawler.materialized_JSON

    {
      "protoFile": "crawler/crawler.proto",
      "value": {
        "@type": "https://CrawlerService",
        "admins": {
          "superuser": "GOD_MODE"
        },
        "crawlers": [
          {
            "userAgent": "Linux",
            "httpTimeout": 30,
            "followRedirects": true
          },
          {
            "userAgent": "Linux",
            "httpTimeout": 60
          },
          {
            "userAgent": "Linux",
            "httpTimeout": 90
          }
        ],
        "logLevel": 2
      }
    }
  5. Run the Protoconf agent in dev mode

    protoconf agent protoconf/
  6. Prepare your application to work with Protobuf configs coming from Protoconf

    1. Compile your .proto schema, this will generate an object to work with. For Python you can use grpcio-tools, for example:

      pip3 install grpcio-tools
      python3 -m grpc_tools.protoc --python_out=. -I../protoconf/src ../protoconf/src/crawler/crawler.proto

      Other languages can use the protoc binary (https://developers.google.com/protocol-buffers/docs/tutorials).

    2. Install the Protoconf Python library:

    pip3 install -r python/requirements.txt python/
    1. In your code, setup a connection to Protoconf and get the config. See full example under examples/. The code mainly consists of:
    from protoconf import ProtoconfSync
    from crawler.crawler_pb2 import CrawlerService
    
    protoconf = ProtoconfSync()
    crawler_service = protoconf.get_and_subscribe("crawler/text_crawler", CrawlerService, got_config)
    print("config:", crawler_service)
    
    def got_config(new_crawler_service):
        print("got a new config:", new_crawler_service)
  7. Commit all changes under protoconf/ (including the .materialized_JSON files)

Production setup

  1. Run your preferred key-value store (e.g. Consul)
  2. Run the Protoconf agent: protoconf agent
  3. Setup a commit hook in your repository server (e.g. Github) that runs protoconf update on changed .materialized_JSON files

Build from source

  1. Install Bazel: https://docs.bazel.build/versions/master/install.html
  2. Clone Protoconf: git clone https://github.com/protoconf/protoconf.git
  3. Build the binary: cd protoconf && bazel build protoconf
  4. Copy the binary to your $PATH, for example: sudo cp bazel-bin/cmd/protoconf/linux_amd64_stripped/protoconf /usr/local/bin/

Trying the example

  1. Make sure Consul is listening locally on default port (you can achieve this with consul agent -dev)
  2. Run the agent: bazel run protoconf agent
  3. Compile the Protoconf config: bazel run protoconf compile "$(pwd)/examples/protoconf" crawler/text_crawler.pconf
  4. Insert the Protoconf config to Consul: bazel run protoconf insert "$(pwd)/examples/protoconf" crawler/text_crawler.materialized_JSON
  5. Run the Go client: bazel run //examples/grpc_clients/go_client, the client will get the config from the agent and will listen to changes
  6. Change the config file at examples/protoconf/src/crawler/text_crawler.pconf
  7. Repeat steps 4 & 5 to recompile and re-insert the config, observe the client got the updated config

Run CI

  1. Download drone-cli from https://github.com/drone/drone-cli/releases.
  2. Copy the drone binary to your $PATH and make it executable
  3. Run: drone exec --pipeline default

About

Configuration as Code framework based on protobuf and Starlark

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Starlark 50.2%
  • Go 41.7%
  • JavaScript 3.3%
  • Python 2.6%
  • HTML 1.8%
  • Shell 0.4%