Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

出现Variable embedding_attention_seq2seq/rnn/embedding_wrapper/embedding already exists, disallowed. Did you mean to set reuse=True in VarScope? #11

Open
c0derm4n opened this issue Oct 25, 2017 · 0 comments

Comments

@c0derm4n
Copy link

ValueError Traceback (most recent call last)
in ()
140 with tf.Session() as sess:
141 sample_encoder_inputs, sample_decoder_inputs ,sample_target_weights= get_samples() #被投喂的数据
--> 142 encoder_inputs, decoder_inputs, target_weights, outputs, loss = get_model() #申请placeholder,前馈得到outputs
143
144 input_feed = {} #投喂数据的键值对,将真实数据投喂到placeholder构成的list--encoder_inputs中,同理对decoder_inputs

in get_model()
131 embedding_size=size,
132 feed_previous=False,
--> 133 dtype=tf.float32)
134
135 #计算交叉熵损失

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\contrib\legacy_seq2seq\python\ops\seq2seq.py in embedding_attention_seq2seq(encoder_inputs, decoder_inputs, cell, num_encoder_symbols, num_decoder_symbols, embedding_size, num_heads, output_projection, feed_previous, dtype, scope, initial_state_attention)
852 embedding_size=embedding_size)
853 encoder_outputs, encoder_state = rnn.static_rnn(
--> 854 encoder_cell, encoder_inputs, dtype=dtype)
855
856 # First calculate a concatenation of encoder outputs to put attention on.

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\python\ops\rnn.py in static_rnn(cell, inputs, initial_state, dtype, sequence_length, scope)
1210 state_size=cell.state_size)
1211 else:
-> 1212 (output, state) = call_cell()
1213
1214 outputs.append(output)

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\python\ops\rnn.py in ()
1197 varscope.reuse_variables()
1198 # pylint: disable=cell-var-from-loop
-> 1199 call_cell = lambda: cell(input_, state)
1200 # pylint: enable=cell-var-from-loop
1201 if sequence_length is not None:

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\python\ops\rnn_cell_impl.py in call(self, inputs, state, scope)
178 with vs.variable_scope(vs.get_variable_scope(),
179 custom_getter=self._rnn_get_variable):
--> 180 return super(RNNCell, self).call(inputs, state)
181
182 def _rnn_get_variable(self, getter, *args, **kwargs):

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\python\layers\base.py in call(self, inputs, *args, **kwargs)
439 # Check input assumptions set after layer building, e.g. input shape.
440 self._assert_input_compatibility(inputs)
--> 441 outputs = self.call(inputs, *args, **kwargs)
442
443 # Apply activity regularization.

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\contrib\rnn\python\ops\core_rnn_cell.py in call(self, inputs, state)
112 "embedding", [self._embedding_classes, self._embedding_size],
113 initializer=initializer,
--> 114 dtype=data_type)
115 embedded = embedding_ops.embedding_lookup(embedding,
116 array_ops.reshape(inputs, [-1]))

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\python\ops\variable_scope.py in get_variable(name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter)
1063 collections=collections, caching_device=caching_device,
1064 partitioner=partitioner, validate_shape=validate_shape,
-> 1065 use_resource=use_resource, custom_getter=custom_getter)
1066 get_variable_or_local_docstring = (
1067 """%s

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\python\ops\variable_scope.py in get_variable(self, var_store, name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter)
960 collections=collections, caching_device=caching_device,
961 partitioner=partitioner, validate_shape=validate_shape,
--> 962 use_resource=use_resource, custom_getter=custom_getter)
963
964 def _get_partitioned_variable(self,

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\python\ops\variable_scope.py in get_variable(self, name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter)
358 reuse=reuse, trainable=trainable, collections=collections,
359 caching_device=caching_device, partitioner=partitioner,
--> 360 validate_shape=validate_shape, use_resource=use_resource)
361 else:
362 return _true_getter(

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\python\ops\rnn_cell_impl.py in _rnn_get_variable(self, getter, *args, **kwargs)
181
182 def _rnn_get_variable(self, getter, *args, **kwargs):
--> 183 variable = getter(*args, **kwargs)
184 trainable = (variable in tf_variables.trainable_variables() or
185 (isinstance(variable, tf_variables.PartitionedVariable) and

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\python\ops\variable_scope.py in _true_getter(name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource)
350 trainable=trainable, collections=collections,
351 caching_device=caching_device, validate_shape=validate_shape,
--> 352 use_resource=use_resource)
353
354 if custom_getter is not None:

C:\Users\lenovo\Anaconda3\envs\py35\lib\site-packages\tensorflow\python\ops\variable_scope.py in _get_single_variable(self, name, shape, dtype, initializer, regularizer, partition_info, reuse, trainable, collections, caching_device, validate_shape, use_resource)
662 " Did you mean to set reuse=True in VarScope? "
663 "Originally defined at:\n\n%s" % (
--> 664 name, "".join(traceback.format_list(tb))))
665 found_var = self._vars[name]
666 if not shape.is_compatible_with(found_var.get_shape()):

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant