Reproduction of Exploiting temporal information for 3D pose estimation
Original implement is here
TODO:
- Provide trained model
- Refine project
python 3.7
mxnet-cu90 1.4.0
CUDA 9.0
pip install pyyaml
pip install scipy
pip install matplotlib
pip install easydict
- Baidu Disk (code: kfsm) or Google Drive to download the HM3.6M annotation
- Unzip data under data folder, and organize like this
${PROJECT_ROOT}
`--data
`--annot
`--s_01_act_02_subact_01_ca_01
`--s_01_act_02_subact_01_ca_02
`-- ......
`-- ......
`-- ......
`--s_11_act_16_subact_02_ca_04
usage: train.py/test.py [-h] --gpu GPU --root ROOT --dataset DATASET [--model MODEL]
[--debug DEBUG]
optional arguments:
-h, --help show this help message and exit
--gpu GPU GPUs to use, e.g. 0,1,2,3
--root ROOT /path/to/project/root/
--dataset DATASET /path/to/your/dataset/root/
--model MODEL /path/to/your/model/, to specify only when test
--debug DEBUG debug mode
Train: python train.py --root /project-root
Test: python test.py --root /project-root --model /model-path
PS: You can modify default configurations in config.py.
Since I don't have 2D pose estimate results on HM3.6M, I just experiment with 2D ground truth as input.
My best result is 41.0mm , slightly higher than 39.2mm reported by paper
PS: LayerNorm is a component inside RNN cell. w/o=without