Skip to content

Latest commit

 

History

History
325 lines (246 loc) · 25.4 KB

README_CN.md

File metadata and controls

325 lines (246 loc) · 25.4 KB

English | 简体中文

RoboDepth: Robust Out-of-Distribution Depth Estimation under Corruptions

Lingdong Kong1  Shaoyuan Xie2  Hanjiang Hu3  Benoit Cottereau4  Lai Xing Ng5  Wei Tsang Ooi1 
1新加坡国立大学   2华中科技大学   3卡耐基梅隆大学   4CNRS   5A*STAR

项目概览

RoboDepth is a comprehensive evaluation benchmark designed for probing the robustness of monocular depth estimation algorithms. It includes 18 common corruption types, ranging from weather and lighting conditions, sensor failure and movement, and noises during data processing.

版本更新

  • [2023.01] - The NYUDepth2-C dataset is ready to be downloaded! See here for more details.
  • [2023.01] - Evaluation server for Track 2 (fully-supervised depth estimation) is available on this page.
  • [2023.01] - Evaluation server for Track 1 (self-supervised depth estimation) is available on this page.
  • [2022.11] - We are organizing the 1st RoboDepth Competition at ICRA 2023. Join the challenge today! 🙋
  • [2022.11] - The KITTI-C dataset is ready to be downloaded! See here for more details.

大纲

安装

Kindly refer to 安装.md for the installation details.

数据准备

Our datasets are hosted by OpenDataLab.


OpenDataLab is a pioneering open data platform for the large AI model era, making datasets accessible. By using OpenDataLab, researchers can obtain free formatted datasets in various fields.

RoboDepth Benchmark

Kindly refer to 数据准备.md for the details to prepare the 1KITTI, 2KITTI-C, 3Cityscapes, 4NYUDepth2, and 5NYUDepth2-C datasets.

Competition @ ICRA 2023

Kindly refer to this page for the details to prepare the training and evaluation data associated with the 1st RoboDepth Competition at the 40th IEEE Conference on Robotics and Automation (ICRA 2023).

开始实验

Kindly refer to 开始实验.md to learn more usage about this codebase.

模型库

🚘 - 室外深度估计

 自监督深度估计
 全监督深度估计
 半监督深度估计

🏠 - 室内深度估计

 自监督深度估计
 全监督深度估计
 半监督深度估计

鲁棒性基线

📊 指标: The following metrics are consistently used in our benchmark:

  • Absolute Relative Difference (the lower the better): $\text{Abs Rel} = \frac{1}{|D|}\sum_{pred\in D}\frac{|gt - pred|}{gt}$ .

  • Accuracy (the higher the better): $\delta_t = \frac{1}{|D|}|{\ pred\in D | \max{(\frac{gt}{pred}, \frac{pred}{gt})< 1.25^t}}| \times 100\%$ .

  • Depth Estimation Error (the lower the better):

    • $\text{DEE}_1 = \text{Abs Rel} - \delta_1 + 1$ ;
    • $\text{DEE}_2 = \frac{\text{Abs Rel} - \delta_1 + 1}{2}$ ;
    • $\text{DEE}_3 = \frac{\text{Abs Rel}}{\delta_1}$ .
  • The second Depth Estimation Error term ($\text{DEE}_2$) is adopted as the main indicator for evaluating model performance in our RoboDepth benchmark. The following two metrics are adopted to compare between models' robustness:

    • mCE (the lower the better): The average corruption error (in percentage) of a candidate model compared to the baseline, which is calculated among all corruption types across five severity levels.
    • mRR (the higher the better): The average resilience rate (in percentage) of a candidate model compared to its "clean" performance, which is calculated among all corruption types across five severity levels.

⚙️ 注释: Symbol denotes the baseline model adopted in mCE calculation.

KITTI-C

Model Modality mCE (%) mRR (%) Clean Bright Dark Fog Frost Snow Contrast Defocus Glass Motion Zoom Elastic Quant Gaussian Impulse Shot ISO Pixelate JPEG
MonoDepth2R18 Mono 100.00 84.46 0.119 0.130 0.280 0.155 0.277 0.511 0.187 0.244 0.242 0.216 0.201 0.129 0.193 0.384 0.389 0.340 0.388 0.145 0.196
MonoDepth2R18+nopt Mono 119.75 82.50 0.144 0.183 0.343 0.311 0.312 0.399 0.416 0.254 0.232 0.199 0.207 0.148 0.212 0.441 0.452 0.402 0.453 0.153 0.171
MonoDepth2R18+HR Mono 106.06 82.44 0.114 0.129 0.376 0.155 0.271 0.582 0.214 0.393 0.257 0.230 0.232 0.123 0.215 0.326 0.352 0.317 0.344 0.138 0.198
MonoDepth2R50 Mono 113.43 80.59 0.117 0.127 0.294 0.155 0.287 0.492 0.233 0.427 0.392 0.277 0.208 0.130 0.198 0.409 0.403 0.368 0.425 0.155 0.211
MaskOcc Mono 104.05 82.97 0.117 0.130 0.285 0.154 0.283 0.492 0.200 0.318 0.295 0.228 0.201 0.129 0.184 0.403 0.410 0.364 0.417 0.143 0.177
DNetR18 Mono 104.71 83.34 0.118 0.128 0.264 0.156 0.317 0.504 0.209 0.348 0.320 0.242 0.215 0.131 0.189 0.362 0.366 0.326 0.357 0.145 0.190
CADepth Mono 110.11 80.07 0.108 0.121 0.300 0.142 0.324 0.529 0.193 0.356 0.347 0.285 0.208 0.121 0.192 0.423 0.433 0.383 0.448 0.144 0.195
HR-Depth Mono 103.73 82.93 0.112 0.121 0.289 0.151 0.279 0.481 0.213 0.356 0.300 0.263 0.224 0.124 0.187 0.363 0.373 0.336 0.374 0.135 0.176
DIFFNetHRNet Mono 94.96 85.41 0.102 0.111 0.222 0.131 0.199 0.352 0.161 0.513 0.330 0.280 0.197 0.114 0.165 0.292 0.266 0.255 0.270 0.135 0.202
ManyDepthsingle Mono 105.41 83.11 0.123 0.135 0.274 0.169 0.288 0.479 0.227 0.254 0.279 0.211 0.194 0.134 0.189 0.430 0.450 0.387 0.452 0.147 0.182
FSRE-Depth Mono 99.05 83.86 0.109 0.128 0.261 0.139 0.237 0.393 0.170 0.291 0.273 0.214 0.185 0.119 0.179 0.400 0.414 0.370 0.407 0.147 0.224
MonoViTMPViT Mono 79.33 89.15 0.099 0.106 0.243 0.116 0.213 0.275 0.119 0.180 0.204 0.163 0.179 0.118 0.146 0.310 0.293 0.271 0.290 0.162 0.154
MonoViTMPViT+HR Mono 70.79 90.67 0.090 0.097 0.221 0.113 0.217 0.253 0.113 0.146 0.159 0.144 0.175 0.098 0.138 0.267 0.246 0.236 0.246 0.135 0.145
DynaDepthR18 Mono 110.38 81.50 0.117 0.128 0.289 0.156 0.289 0.509 0.208 0.501 0.347 0.305 0.207 0.127 0.186 0.379 0.379 0.336 0.379 0.141 0.180
DynaDepthR50 Mono 119.99 77.98 0.113 0.128 0.298 0.152 0.324 0.549 0.201 0.532 0.454 0.318 0.218 0.125 0.197 0.418 0.437 0.382 0.448 0.153 0.216
RA-DepthHRNet Mono 112.73 78.79 0.096 0.113 0.314 0.127 0.239 0.413 0.165 0.499 0.368 0.378 0.214 0.122 0.178 0.423 0.403 0.402 0.455 0.175 0.192
TriDepthsingle Mono 109.26 81.56 0.117 0.131 0.300 0.188 0.338 0.498 0.265 0.268 0.301 0.212 0.190 0.126 0.199 0.418 0.438 0.380 0.438 0.142 0.205
Lite-MonoTiny Mono 92.92 89.55 0.115 0.127 0.257 0.157 0.225 0.354 0.191 0.257 0.248 0.198 0.186 0.127 0.159 0.358 0.342 0.336 0.360 0.147 0.161
Lite-MonoTiny+HR Mono 86.71 87.63 0.106 0.119 0.227 0.139 0.282 0.370 0.166 0.216 0.201 0.190 0.202 0.116 0.146 0.320 0.291 0.286 0.312 0.148 0.167
Lite-MonoSmall Mono 100.34 84.67 0.115 0.127 0.251 0.162 0.251 0.430 0.238 0.353 0.282 0.246 0.204 0.128 0.161 0.350 0.336 0.319 0.356 0.154 0.164
Lite-MonoSmall+HR Mono 89.90 86.05 0.105 0.119 0.263 0.139 0.263 0.436 0.167 0.188 0.181 0.193 0.214 0.117 0.147 0.366 0.354 0.327 0.355 0.152 0.157
Lite-MonoBase Mono 93.16 85.99 0.110 0.119 0.259 0.144 0.245 0.384 0.177 0.224 0.237 0.221 0.196 0.129 0.175 0.361 0.340 0.334 0.363 0.151 0.165
Lite-MonoBase+HR Mono 89.85 85.80 0.103 0.115 0.256 0.135 0.258 0.486 0.164 0.220 0.194 0.213 0.205 0.114 0.154 0.340 0.327 0.321 0.344 0.145 0.156
Lite-MonoLarge Mono 90.75 85.54 0.102 0.110 0.227 0.126 0.255 0.433 0.149 0.222 0.225 0.220 0.192 0.121 0.148 0.363 0.348 0.329 0.362 0.160 0.184
Lite-MonoLarge+HR Mono 92.01 83.90 0.096 0.112 0.241 0.122 0.280 0.482 0.141 0.193 0.194 0.213 0.222 0.108 0.140 0.403 0.404 0.365 0.407 0.139 0.182
MonoDepth2R18 Stereo 117.69 79.05 0.123 0.133 0.348 0.161 0.305 0.515 0.234 0.390 0.332 0.264 0.209 0.135 0.200 0.492 0.509 0.463 0.493 0.144 0.194
MonoDepth2R18+nopt Stereo 128.98 79.20 0.150 0.181 0.422 0.292 0.352 0.435 0.342 0.266 0.232 0.217 0.229 0.156 0.236 0.539 0.564 0.521 0.556 0.164 0.178
MonoDepth2R18+HR Stereo 111.46 81.65 0.117 0.132 0.285 0.167 0.356 0.529 0.238 0.432 0.312 0.279 0.246 0.130 0.206 0.343 0.343 0.322 0.344 0.150 0.209
DepthHints Stereo 111.41 80.08 0.113 0.124 0.310 0.137 0.321 0.515 0.164 0.350 0.410 0.263 0.196 0.130 0.192 0.440 0.447 0.412 0.455 0.157 0.192
DepthHintsHR Stereo 112.02 79.53 0.104 0.122 0.282 0.141 0.317 0.480 0.180 0.459 0.363 0.320 0.262 0.118 0.183 0.397 0.421 0.380 0.424 0.141 0.183
DepthHintsHR+nopt Stereo 141.61 73.18 0.134 0.173 0.476 0.301 0.374 0.463 0.393 0.357 0.289 0.241 0.231 0.142 0.247 0.613 0.658 0.599 0.692 0.152 0.191
MonoDepth2R18 M+S 124.31 75.36 0.116 0.127 0.404 0.150 0.295 0.536 0.199 0.447 0.346 0.283 0.204 0.128 0.203 0.577 0.605 0.561 0.629 0.136 0.179
MonoDepth2R18+nopt M+S 136.25 76.72 0.146 0.193 0.460 0.328 0.421 0.428 0.440 0.228 0.221 0.216 0.230 0.153 0.229 0.570 0.596 0.549 0.606 0.161 0.177
MonoDepth2R18+HR M+S 106.06 82.44 0.114 0.129 0.376 0.155 0.271 0.582 0.214 0.393 0.257 0.230 0.232 0.123 0.215 0.326 0.352 0.317 0.344 0.138 0.198
CADepth M+S 118.29 76.68 0.110 0.123 0.357 0.137 0.311 0.556 0.169 0.338 0.412 0.260 0.193 0.126 0.186 0.546 0.559 0.524 0.582 0.145 0.192
MonoViTMPViT M+S 75.39 90.39 0.098 0.104 0.245 0.122 0.213 0.215 0.131 0.179 0.184 0.161 0.168 0.112 0.147 0.277 0.257 0.242 0.260 0.147 0.144
MonoViTMPViT+HR M+S 74.95 89.72 0.094 0.102 0.238 0.114 0.225 0.269 0.117 0.145 0.171 0.145 0.184 0.108 0.145 0.302 0.277 0.259 0.285 0.135 0.148

NYUDepth2-C

Model mCE (%) mRR (%) Clean Bright Dark Contrast Defocus Glass Motion Zoom Elastic Quant Gaussian Impulse Shot ISO Pixelate JPEG
BTSR50 122.78 80.63 0.122 0.149 0.269 0.265 0.337 0.262 0.231 0.372 0.182 0.180 0.442 0.512 0.392 0.474 0.139 0.175
AdaBinsR50 134.69 81.62 0.158 0.179 0.293 0.289 0.339 0.280 0.245 0.390 0.204 0.216 0.458 0.519 0.401 0.481 0.186 0.211
AdaBinsEfficientB5 100.00 85.83 0.112 0.132 0.194 0.212 0.235 0.206 0.184 0.384 0.153 0.151 0.390 0.374 0.294 0.380 0.124 0.154
DPTViT-B 83.22 95.25 0.136 0.135 0.182 0.180 0.154 0.166 0.155 0.232 0.139 0.165 0.200 0.213 0.191 0.199 0.171 0.174
SimIPUR50+no_pt 200.17 92.52 0.372 0.388 0.427 0.448 0.416 0.401 0.400 0.433 0.381 0.391 0.465 0.471 0.450 0.461 0.375 0.378
SimIPUR50+imagenet 163.06 85.01 0.244 0.269 0.370 0.376 0.377 0.337 0.324 0.422 0.306 0.289 0.445 0.463 0.414 0.449 0.247 0.272
SimIPUR50+kitti 173.78 91.64 0.312 0.326 0.373 0.406 0.360 0.333 0.335 0.386 0.316 0.333 0.432 0.442 0.422 0.443 0.314 0.322
SimIPUR50+waymo 159.46 85.73 0.243 0.269 0.348 0.398 0.380 0.327 0.313 0.405 0.256 0.287 0.439 0.461 0.416 0.455 0.246 0.265
DepthFormerSwinT_w7_1k 106.34 87.25 0.125 0.147 0.279 0.235 0.220 0.260 0.191 0.300 0.175 0.192 0.294 0.321 0.289 0.305 0.161 0.179
DepthFormerSwinT_w7_22k 63.47 94.19 0.086 0.099 0.150 0.123 0.127 0.172 0.119 0.237 0.112 0.119 0.159 0.156 0.148 0.157 0.101 0.108

特性分析

For more detailed benchmarking results and to access the pretrained weights used in robustness evaluation, kindly refer to 实验结果.md.

生成"损坏"数据

You can manage to create your own "RoboDepth" corrpution sets! Follow the instructions listed in 数据生成.md.

更新计划

  • Initial release. 🚀
  • Add scripts for creating common corruptions.
  • Add download link of KITTI-C and NYUDepth2-C.
  • Add competition data.
  • Add benchmarking results.
  • Add evaluation scripts on corruption sets.

引用

If you find this work helpful, please kindly consider citing our paper:

@article{kong2023robodepth,
  title = {RoboDepth: Robust Out-of-Distribution Depth Estimation under Corruptions},
  author = {Kong, Lingdong and Xie, Shaoyuan and Hu, Hanjiang and Cottereau, Benoit and Ng, Lai Xing and Ooi, Wei Tsang},
  journal = {arXiv preprint arXiv:23xx.xxxxx}, 
  year = {2023},
}
@misc{kong2023robodepth_benchmark,
  title = {The RoboDepth Benchmark for Robust Out-of-Distribution Depth Estimation under Corruptions},
  author = {Kong, Lingdong and Xie, Shaoyuan and Hu, Hanjiang and Cottereau, Benoit and Ng, Lai Xing and Ooi, Wei Tsang},
  howpublished = {\url{https://github.com/ldkong1205/RoboDepth}}, 
  year = {2023},
}

许可

Creative Commons License
This work is under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

致谢

This project is supported by DesCartes, a CNRS@CREATE program on Intelligent Modeling for Decision-Making in Critical Urban Systems.