Sparse Subspace Clustering-Orthogonal Matching Pursuit (SSC-OMP) and SSC-Matching Pursuit (SSC-MP) are sparsity-based subspace clustering algorithms (see ref. 1, 2, 3 for SSC-OMP and ref. 3 for SSC-MP for more information).
Type
>> python3 ssc_mps.py
to run a simple face clustering experiment.
Tested with Python 3.4.2, numpy 1.11.0, scikit-learn 0.18.1.
- E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk, “Greedy feature selection for subspace clustering,” Journal of Mach. Learn. Research, vol. 14, pp. 2487–2517, 2013.
- C. You, D Robinson, and R. Vidal, “Scalable sparse subspace clustering by orthogonal matching pursuit,” in IEEE Conf. on Comp. Vision and Pattern Recogn., 2016, pp. 3918– 3927.
- M. Tschannen and H. Bölcskei, "Noisy Subspace Clustering via Matching Pursuits", arXiv:1612.03450, preprint, 2016.