Skip to content

le-vision/ssc_mps_py

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

Python implementation of SSC-OMP and SSC-MP

Sparse Subspace Clustering-Orthogonal Matching Pursuit (SSC-OMP) and SSC-Matching Pursuit (SSC-MP) are sparsity-based subspace clustering algorithms (see ref. 1, 2, 3 for SSC-OMP and ref. 3 for SSC-MP for more information).

Type

>> python3 ssc_mps.py

to run a simple face clustering experiment.

Tested with Python 3.4.2, numpy 1.11.0, scikit-learn 0.18.1.

References

  1. E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk, “Greedy feature selection for subspace clustering,” Journal of Mach. Learn. Research, vol. 14, pp. 2487–2517, 2013.
  2. C. You, D Robinson, and R. Vidal, “Scalable sparse subspace clustering by orthogonal matching pursuit,” in IEEE Conf. on Comp. Vision and Pattern Recogn., 2016, pp. 3918– 3927.
  3. M. Tschannen and H. Bölcskei, "Noisy Subspace Clustering via Matching Pursuits", arXiv:1612.03450, preprint, 2016.

About

Python implementation of SSC-OMP and SSC-MP

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%