Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

Commit

Permalink
feat(data/polynomial/degree/definition): nat_degree_monomial in ite f…
Browse files Browse the repository at this point in the history
…orm (#11123)

Changed the proof usage elsewhere.
This helps deal with sums of over monomials.
  • Loading branch information
pechersky authored and erdOne committed Jan 1, 2022
1 parent a00fb85 commit e047d41
Show file tree
Hide file tree
Showing 3 changed files with 11 additions and 6 deletions.
12 changes: 8 additions & 4 deletions src/data/polynomial/degree/definitions.lean
Original file line number Diff line number Diff line change
Expand Up @@ -198,9 +198,13 @@ nat_degree_eq_of_degree_eq_some (degree_C_mul_X_pow n ha)
@[simp] lemma nat_degree_C_mul_X (a : R) (ha : a ≠ 0) : nat_degree (C a * X) = 1 :=
by simpa only [pow_one] using nat_degree_C_mul_X_pow 1 a ha

@[simp] lemma nat_degree_monomial (i : ℕ) (r : R) (hr : r ≠ 0) :
nat_degree (monomial i r) = i :=
by rw [← C_mul_X_pow_eq_monomial, nat_degree_C_mul_X_pow i r hr]
@[simp] lemma nat_degree_monomial [decidable_eq R] (i : ℕ) (r : R) :
nat_degree (monomial i r) = if r = 0 then 0 else i :=
begin
split_ifs with hr,
{ simp [hr] },
{ rw [← C_mul_X_pow_eq_monomial, nat_degree_C_mul_X_pow i r hr] }
end

lemma coeff_eq_zero_of_degree_lt (h : degree p < n) : coeff p n = 0 :=
not_not.1 (mt le_degree_of_ne_zero (not_le_of_gt h))
Expand Down Expand Up @@ -561,7 +565,7 @@ lemma degree_pow_le (p : polynomial R) : ∀ (n : ℕ), degree (p ^ n) ≤ n •
begin
by_cases ha : a = 0,
{ simp only [ha, (monomial n).map_zero, leading_coeff_zero] },
{ rw [leading_coeff, nat_degree_monomial _ _ ha, coeff_monomial], simp }
{ rw [leading_coeff, nat_degree_monomial, if_neg ha, coeff_monomial], simp }
end

lemma leading_coeff_C_mul_X_pow (a : R) (n : ℕ) : leading_coeff (C a * X ^ n) = a :=
Expand Down
2 changes: 1 addition & 1 deletion src/data/polynomial/erase_lead.lean
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ erase_lead_card_support fc
begin
by_cases hr : r = 0,
{ subst r, simp only [monomial_zero_right, erase_lead_zero] },
{ rw [erase_lead, nat_degree_monomial _ _ hr, erase_monomial] }
{ rw [erase_lead, nat_degree_monomial, if_neg hr, erase_monomial] }
end

@[simp] lemma erase_lead_C (r : R) : erase_lead (C r) = 0 :=
Expand Down
3 changes: 2 additions & 1 deletion src/data/polynomial/mirror.lean
Original file line number Diff line number Diff line change
Expand Up @@ -40,9 +40,10 @@ noncomputable def mirror := p.reverse * X ^ p.nat_trailing_degree

lemma mirror_monomial (n : ℕ) (a : R) : (monomial n a).mirror = (monomial n a) :=
begin
classical,
by_cases ha : a = 0,
{ rw [ha, monomial_zero_right, mirror_zero] },
{ rw [mirror, reverse, nat_degree_monomial n a ha, nat_trailing_degree_monomial ha,
{ rw [mirror, reverse, nat_degree_monomial n a, if_neg ha, nat_trailing_degree_monomial ha,
←C_mul_X_pow_eq_monomial, reflect_C_mul_X_pow, rev_at_le (le_refl n),
tsub_self, pow_zero, mul_one] },
end
Expand Down

0 comments on commit e047d41

Please sign in to comment.