Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

[Merged by Bors] - feat(analysis/inner_product_space/pi_L2): norms of basis vectors #19020

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 35 additions & 7 deletions src/analysis/inner_product_space/pi_L2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -226,18 +226,46 @@ by simp [apply_ite conj]

lemma euclidean_space.inner_single_right [decidable_eq ι] (i : ι) (a : 𝕜)
(v : euclidean_space 𝕜 ι) :
⟪v, euclidean_space.single i (a : 𝕜)⟫ = a * conj (v i) :=
⟪v, euclidean_space.single i (a : 𝕜)⟫ = a * conj (v i) :=
by simp [apply_ite conj, mul_comm]

lemma euclidean_space.pi_Lp_congr_left_single [decidable_eq ι] {ι' : Type*} [fintype ι']
[decidable_eq ι'] (e : ι' ≃ ι) (i' : ι') :
linear_isometry_equiv.pi_Lp_congr_left 2 𝕜 𝕜 e (euclidean_space.single i' (1:𝕜)) =
euclidean_space.single (e i') (1:𝕜) :=
@[simp] lemma euclidean_space.norm_single [decidable_eq ι] (i : ι) (a : 𝕜) :
‖euclidean_space.single i (a : 𝕜)‖ = ‖a‖ :=
(pi_Lp.norm_equiv_symm_single 2 (λ i, 𝕜) i a : _)

@[simp] lemma euclidean_space.nnnorm_single [decidable_eq ι] (i : ι) (a : 𝕜) :
‖euclidean_space.single i (a : 𝕜)‖₊ = ‖a‖₊ :=
(pi_Lp.nnnorm_equiv_symm_single 2 (λ i, 𝕜) i a : _)

@[simp] lemma euclidean_space.dist_single_same [decidable_eq ι] (i : ι) (a b : 𝕜) :
dist (euclidean_space.single i (a : 𝕜)) (euclidean_space.single i (b : 𝕜)) = dist a b :=
(pi_Lp.dist_equiv_symm_single_same 2 (λ i, 𝕜) i a b : _)

@[simp] lemma euclidean_space.nndist_single_same [decidable_eq ι] (i : ι) (a b : 𝕜) :
nndist (euclidean_space.single i (a : 𝕜)) (euclidean_space.single i (b : 𝕜)) = nndist a b :=
(pi_Lp.nndist_equiv_symm_single_same 2 (λ i, 𝕜) i a b : _)

@[simp] lemma euclidean_space.edist_single_same [decidable_eq ι] (i : ι) (a b : 𝕜) :
edist (euclidean_space.single i (a : 𝕜)) (euclidean_space.single i (b : 𝕜)) = edist a b :=
(pi_Lp.edist_equiv_symm_single_same 2 (λ i, 𝕜) i a b : _)

/-- `euclidean_space.single` forms an orthonormal family. -/
lemma euclidean_space.orthonormal_single [decidable_eq ι] :
orthonormal 𝕜 (λ i : ι, euclidean_space.single i (1 : 𝕜)) :=

eric-wieser marked this conversation as resolved.
Show resolved Hide resolved
begin
ext i,
simpa using if_congr e.symm_apply_eq rfl rfl
simp_rw [orthonormal_iff_ite, euclidean_space.inner_single_left, map_one, one_mul,
euclidean_space.single_apply],
intros i j,
refl,
end

lemma euclidean_space.pi_Lp_congr_left_single [decidable_eq ι] {ι' : Type*} [fintype ι']
[decidable_eq ι'] (e : ι' ≃ ι) (i' : ι') (v : 𝕜):
linear_isometry_equiv.pi_Lp_congr_left 2 𝕜 𝕜 e (euclidean_space.single i' v) =
euclidean_space.single (e i') v :=
linear_isometry_equiv.pi_Lp_congr_left_single e i' _

variables (ι 𝕜 E)

/-- An orthonormal basis on E is an identification of `E` with its dimensional-matching
Expand Down
57 changes: 56 additions & 1 deletion src/analysis/normed_space/pi_Lp.lean
Original file line number Diff line number Diff line change
Expand Up @@ -623,7 +623,9 @@ linear_isometry_equiv.ext $ λ x, rfl

@[simp] lemma _root_.linear_isometry_equiv.pi_Lp_congr_left_single
[decidable_eq ι] [decidable_eq ι'] (e : ι ≃ ι') (i : ι) (v : E) :
linear_isometry_equiv.pi_Lp_congr_left p 𝕜 E e (pi.single i v) = pi.single (e i) v :=
linear_isometry_equiv.pi_Lp_congr_left p 𝕜 E e (
(pi_Lp.equiv p (λ _, E)).symm $ pi.single i v) =
(pi_Lp.equiv p (λ _, E)).symm (pi.single (e i) v) :=
begin
funext x,
simp [linear_isometry_equiv.pi_Lp_congr_left, linear_equiv.Pi_congr_left', equiv.Pi_congr_left',
Expand All @@ -649,6 +651,59 @@ end
@[simp] lemma equiv_symm_smul :
(pi_Lp.equiv p β).symm (c • x') = c • (pi_Lp.equiv p β).symm x' := rfl

section single

variables (p)
variables [decidable_eq ι]

@[simp]
lemma nnnorm_equiv_symm_single (i : ι) (b : β i) :
‖(pi_Lp.equiv p β).symm (pi.single i b)‖₊ = ‖b‖₊ :=
begin
haveI : nonempty ι := ⟨i⟩,
unfreezingI { induction p using with_top.rec_top_coe },
{ simp_rw [nnnorm_eq_csupr, equiv_symm_apply],
refine csupr_eq_of_forall_le_of_forall_lt_exists_gt (λ j, _) (λ n hn, ⟨i, hn.trans_eq _⟩),
{ obtain rfl | hij := decidable.eq_or_ne i j,
{ rw pi.single_eq_same },
{ rw [pi.single_eq_of_ne' hij, nnnorm_zero],
exact zero_le _ } },
{ rw pi.single_eq_same } },
{ have hp0 : (p : ℝ) ≠ 0,
{ exact_mod_cast (zero_lt_one.trans_le $ fact.out (1 ≤ (p : ℝ≥0∞))).ne' },
rw [nnnorm_eq_sum ennreal.coe_ne_top, ennreal.coe_to_real, fintype.sum_eq_single i,
equiv_symm_apply, pi.single_eq_same, ←nnreal.rpow_mul, one_div, mul_inv_cancel hp0,
nnreal.rpow_one],
intros j hij,
rw [equiv_symm_apply, pi.single_eq_of_ne hij, nnnorm_zero, nnreal.zero_rpow hp0] },
end
Comment on lines +659 to +679
Copy link
Member Author

@eric-wieser eric-wieser May 15, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This one was an annoying case bash, but maybe that's unavoidable since both the norm and pi.single are defined by cases.


@[simp]
lemma norm_equiv_symm_single (i : ι) (b : β i) :
‖(pi_Lp.equiv p β).symm (pi.single i b)‖ = ‖b‖ :=
congr_arg coe $ nnnorm_equiv_symm_single p β i b

@[simp]
lemma nndist_equiv_symm_single_same (i : ι) (b₁ b₂ : β i) :
nndist ((pi_Lp.equiv p β).symm (pi.single i b₁)) ((pi_Lp.equiv p β).symm (pi.single i b₂)) =
nndist b₁ b₂ :=
by rw [nndist_eq_nnnorm, nndist_eq_nnnorm, ←equiv_symm_sub, ←pi.single_sub,
nnnorm_equiv_symm_single]

@[simp]
lemma dist_equiv_symm_single_same (i : ι) (b₁ b₂ : β i) :
dist ((pi_Lp.equiv p β).symm (pi.single i b₁)) ((pi_Lp.equiv p β).symm (pi.single i b₂)) =
dist b₁ b₂ :=
congr_arg coe $ nndist_equiv_symm_single_same p β i b₁ b₂

@[simp]
lemma edist_equiv_symm_single_same (i : ι) (b₁ b₂ : β i) :
edist ((pi_Lp.equiv p β).symm (pi.single i b₁)) ((pi_Lp.equiv p β).symm (pi.single i b₂)) =
edist b₁ b₂ :=
by simpa only [edist_nndist] using congr_arg coe (nndist_equiv_symm_single_same p β i b₁ b₂)

end single

/-- When `p = ∞`, this lemma does not hold without the additional assumption `nonempty ι` because
the left-hand side simplifies to `0`, while the right-hand side simplifies to `‖b‖₊`. See
`pi_Lp.nnnorm_equiv_symm_const'` for a version which exchanges the hypothesis `p ≠ ∞` for
Expand Down