Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
This was "feat(topology/metric_space): diameter of pointwise zero and addition"
  • Loading branch information
eric-wieser committed Nov 1, 2023
1 parent e3bc933 commit 83e44eb
Show file tree
Hide file tree
Showing 7 changed files with 90 additions and 8 deletions.
19 changes: 18 additions & 1 deletion Mathlib/Analysis/Normed/Group/Pointwise.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,9 @@ Authors: Sébastien Gouëzel, Yaël Dillies
-/
import Mathlib.Analysis.Normed.Group.Basic
import Mathlib.Topology.MetricSpace.HausdorffDistance
import Topology.MetricSpace.IsometricSmul

#align_import analysis.normed.group.pointwise from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
#align_import analysis.normed.group.pointwise from "leanprover-community/mathlib"@"c8f305514e0d47dfaa710f5a52f0d21b588e6328"

/-!
# Properties of pointwise addition of sets in normed groups
Expand All @@ -24,6 +25,7 @@ section SeminormedGroup

variable [SeminormedGroup E] {ε δ : ℝ} {s t : Set E} {x y : E}

-- note: we can't use `LipschitzOnWith.isBounded_image2` here without adding `[IsometricSMul E E]`
@[to_additive]
theorem Bornology.IsBounded.mul (hs : IsBounded s) (ht : IsBounded t) : IsBounded (s * t) := by
obtain ⟨Rs, hRs⟩ : ∃ R, ∀ x ∈ s, ‖x‖ ≤ R := hs.exists_norm_le'
Expand All @@ -34,6 +36,12 @@ theorem Bornology.IsBounded.mul (hs : IsBounded s) (ht : IsBounded t) : IsBounde
#align metric.bounded.mul Bornology.IsBounded.mul
#align metric.bounded.add Bornology.IsBounded.add

@[to_additive]
theorem Bornology.IsBounded.of_mul (hst : Bounded (s * t)) : Bounded s ∨ Bounded t :=
AntilipschitzWith.isBounded_of_image2_left _ (fun x => (isometry_mul_right x).antilipschitz) hst
#align metric.bounded.of_mul Bornology.IsBounded.of_mul
#align metric.bounded.of_add Bornology.IsBounded.of_add

@[to_additive]
theorem Bornology.IsBounded.inv : IsBounded s → IsBounded s⁻¹ := by
simp_rw [isBounded_iff_forall_norm_le', ← image_inv, ball_image_iff, norm_inv']
Expand Down Expand Up @@ -69,6 +77,15 @@ theorem infEdist_inv (x : E) (s : Set E) : infEdist x⁻¹ s = infEdist x s⁻¹
#align inf_edist_inv infEdist_inv
#align inf_edist_neg infEdist_neg

@[to_additive]
theorem ediam_mul_le (x y : Set E) : EMetric.diam (x * y) ≤ EMetric.diam x + EMetric.diam y :=
(LipschitzOnWith.ediam_image2_le (· * ·) _ _
(fun _ _ => (isometry_mul_right _).lipschitz.LipschitzOnWith _) fun _ _ =>
(isometry_mul_left _).lipschitz.LipschitzOnWith _).trans_eq <|
by simp only [ENNReal.coe_one, one_mul]
#align ediam_mul_le ediam_mul_le
#align ediam_add_le ediam_add_le

end EMetric

variable (ε δ s t x y)
Expand Down
6 changes: 6 additions & 0 deletions Mathlib/Topology/Bornology/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -173,6 +173,12 @@ theorem isBounded_empty : IsBounded (∅ : Set α) := by
exact univ_mem
#align bornology.is_bounded_empty Bornology.isBounded_empty

theorem nonempty_of_not_isBounded (h : ¬IsBounded s) : s.Nonempty := by
rw [nonempty_iff_ne_empty]
rintro rfl
exact h isBounded_empty
#align metric.nonempty_of_unbounded Bornology.nonempty_of_not_isBounded

@[simp]
theorem isBounded_singleton : IsBounded ({x} : Set α) := by
rw [isBounded_def]
Expand Down
12 changes: 10 additions & 2 deletions Mathlib/Topology/EMetricSpace/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ import Mathlib.Topology.UniformSpace.Pi
import Mathlib.Topology.UniformSpace.UniformConvergence
import Mathlib.Topology.UniformSpace.UniformEmbedding

#align_import topology.metric_space.emetric_space from "leanprover-community/mathlib"@"195fcd60ff2bfe392543bceb0ec2adcdb472db4c"
#align_import topology.metric_space.emetric_space from "leanprover-community/mathlib"@"c8f305514e0d47dfaa710f5a52f0d21b588e6328"

/-!
# Extended metric spaces
Expand All @@ -29,7 +29,9 @@ to `EMetricSpace` at the end.
-/


open Set Filter Classical Uniformity Topology BigOperators NNReal ENNReal
open Set Filter Classical

open scoped Uniformity Topology BigOperators Filter NNReal ENNReal Pointwise

universe u v w

Expand Down Expand Up @@ -925,6 +927,12 @@ theorem diam_singleton : diam ({x} : Set α) = 0 :=
diam_subsingleton subsingleton_singleton
#align emetric.diam_singleton EMetric.diam_singleton

@[to_additive (attr := simp)]
theorem diam_one [One α] : diam (1 : Set α) = 0 :=
diam_singleton
#align emetric.diam_one EMetric.diam_one
#align emetric.diam_zero EMetric.diam_zero

theorem diam_iUnion_mem_option {ι : Type*} (o : Option ι) (s : ι → Set α) :
diam (⋃ i ∈ o, s i) = ⨆ i ∈ o, diam (s i) := by cases o <;> simp
#align emetric.diam_Union_mem_option EMetric.diam_iUnion_mem_option
Expand Down
24 changes: 22 additions & 2 deletions Mathlib/Topology/MetricSpace/Antilipschitz.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ Authors: Yury Kudryashov
import Mathlib.Topology.MetricSpace.Lipschitz
import Mathlib.Topology.UniformSpace.CompleteSeparated

#align_import topology.metric_space.antilipschitz from "leanprover-community/mathlib"@"97f079b7e89566de3a1143f887713667328c38ba"
#align_import topology.metric_space.antilipschitz from "leanprover-community/mathlib"@"c8f305514e0d47dfaa710f5a52f0d21b588e6328"

/-!
# Antilipschitz functions
Expand Down Expand Up @@ -218,7 +218,8 @@ namespace AntilipschitzWith

open Metric

variable [PseudoMetricSpace α] [PseudoMetricSpace β] {K : ℝ≥0} {f : α → β}
variable [PseudoMetricSpace α] [PseudoMetricSpace β] [PseudoMetricSpace γ]
variable {K : ℝ≥0} {f : α → β}

theorem isBounded_preimage (hf : AntilipschitzWith K f) {s : Set β} (hs : IsBounded s) :
IsBounded (f ⁻¹' s) :=
Expand All @@ -243,6 +244,25 @@ protected theorem properSpace {α : Type*} [MetricSpace α] {K : ℝ≥0} {f :
exact (hf.image_preimage _).symm
#align antilipschitz_with.proper_space AntilipschitzWith.properSpace

theorem isBounded_of_image2_left (f : α → β → γ) {K₁ : ℝ≥0}
(hf : ∀ b, AntilipschitzWith K₁ fun a => f a b) {s : Set α} {t : Set β}
(hst : IsBounded (Set.image2 f s t)) : IsBounded s ∨ IsBounded t := by
contrapose! hst
obtain ⟨b, hb⟩ : t.Nonempty := nonempty_of_not_isBounded hst.2
have : ¬IsBounded (Set.image2 f s {b}) := by
intro h
apply hst.1
rw [Set.image2_singleton_right] at h
replace h := (hf b).isBounded_preimage h
refine' h.subset (subset_preimage_image _ _)
exact mt (IsBounded.subset · (image2_subset subset_rfl (singleton_subset_iff.mpr hb))) this
#align antilipschitz_with.bounded_of_image2_left AntilipschitzWith.isBounded_of_image2_left

theorem isBounded_of_image2_right {f : α → β → γ} {K₂ : ℝ≥0} (hf : ∀ a, AntilipschitzWith K₂ (f a))
{s : Set α} {t : Set β} (hst : IsBounded (Set.image2 f s t)) : IsBounded s ∨ IsBounded t :=
Or.symm <| isBounded_of_image2_left (flip f) hf <| image2_swap f s t ▸ hst
#align antilipschitz_with.bounded_of_image2_right AntilipschitzWith.isBounded_of_image2_right

end AntilipschitzWith

theorem LipschitzWith.to_rightInverse [PseudoEMetricSpace α] [PseudoEMetricSpace β] {K : ℝ≥0}
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Topology/MetricSpace/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ Authors: Jeremy Avigad, Robert Y. Lewis, Johannes Hölzl, Mario Carneiro, Sébas
-/
import Mathlib.Topology.MetricSpace.PseudoMetric

#align_import topology.metric_space.basic from "leanprover-community/mathlib"@"8047de4d911cdef39c2d646165eea972f7f9f539"
#align_import topology.metric_space.basic from "leanprover-community/mathlib"@"c8f305514e0d47dfaa710f5a52f0d21b588e6328"

/-!
# Metric spaces
Expand Down
8 changes: 7 additions & 1 deletion Mathlib/Topology/MetricSpace/Bounded.lean
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ metric, pseudo_metric, bounded, diameter, Heine-Borel theorem
-/

open Set Filter Bornology
open scoped ENNReal Uniformity Topology
open scoped ENNReal Uniformity Topology Pointwise

universe u v w

Expand Down Expand Up @@ -363,6 +363,12 @@ theorem diam_singleton : diam ({x} : Set α) = 0 :=
diam_subsingleton subsingleton_singleton
#align metric.diam_singleton Metric.diam_singleton

@[to_additive (attr := simp)]
theorem diam_one [One α] : diam (1 : Set α) = 0 :=
diam_singleton
#align metric.diam_one Metric.diam_one
#align metric.diam_zero Metric.diam_zero

-- Does not work as a simp-lemma, since {x, y} reduces to (insert y {x})
theorem diam_pair : diam ({x, y} : Set α) = dist x y := by
simp only [diam, EMetric.diam_pair, dist_edist]
Expand Down
27 changes: 26 additions & 1 deletion Mathlib/Topology/MetricSpace/Lipschitz.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ import Mathlib.Topology.Bornology.Hom
import Mathlib.Topology.MetricSpace.Basic
import Mathlib.Topology.MetricSpace.Bounded

#align_import topology.metric_space.lipschitz from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
#align_import topology.metric_space.lipschitz from "leanprover-community/mathlib"@"c8f305514e0d47dfaa710f5a52f0d21b588e6328"

/-!
# Lipschitz continuous functions
Expand Down Expand Up @@ -541,6 +541,19 @@ protected theorem prod {g : α → γ} {Kf Kg : ℝ≥0} (hf : LipschitzOnWith K
rw [ENNReal.coe_mono.map_max, Prod.edist_eq, ENNReal.max_mul]
exact max_le_max (hf hx hy) (hg hx hy)

theorem ediam_image2_le (f : α → β → γ) {K₁ K₂ : ℝ≥0} (s : Set α) (t : Set β)
(hf₁ : ∀ b ∈ t, LipschitzOnWith K₁ (fun a => f a b) s)
(hf₂ : ∀ a ∈ s, LipschitzOnWith K₂ (f a) t) :
EMetric.diam (Set.image2 f s t) ≤ ↑K₁ * EMetric.diam s + ↑K₂ * EMetric.diam t := by
apply EMetric.diam_le
rintro _ ⟨a₁, b₁, ha₁, hb₁, rfl⟩ _ ⟨a₂, b₂, ha₂, hb₂, rfl⟩
refine' (edist_triangle _ (f a₂ b₁) _).trans _
exact
add_le_add
((hf₁ b₁ hb₁ ha₁ ha₂).trans <| ENNReal.mul_left_mono <| EMetric.edist_le_diam_of_mem ha₁ ha₂)
((hf₂ a₂ ha₂ hb₁ hb₂).trans <| ENNReal.mul_left_mono <| EMetric.edist_le_diam_of_mem hb₁ hb₂)
#align lipschitz_on_with.ediam_image2_le LipschitzOnWith.ediam_image2_le

end EMetric

section Metric
Expand Down Expand Up @@ -592,6 +605,18 @@ protected theorem iff_le_add_mul {f : α → ℝ} {K : ℝ≥0} :
⟨LipschitzOnWith.le_add_mul, LipschitzOnWith.of_le_add_mul K⟩
#align lipschitz_on_with.iff_le_add_mul LipschitzOnWith.iff_le_add_mul

theorem isBounded_image2 (f : α → β → γ) {K₁ K₂ : ℝ≥0} {s : Set α} {t : Set β}
(hs : Bornology.IsBounded s) (ht : Bornology.IsBounded t)
(hf₁ : ∀ b ∈ t, LipschitzOnWith K₁ (fun a => f a b) s)
(hf₂ : ∀ a ∈ s, LipschitzOnWith K₂ (f a) t) : Bornology.IsBounded (Set.image2 f s t) :=
Metric.isBounded_iff_ediam_ne_top.2 <|
ne_top_of_le_ne_top
(ENNReal.add_ne_top.mpr
⟨ENNReal.mul_ne_top ENNReal.coe_ne_top hs.ediam_ne_top,
ENNReal.mul_ne_top ENNReal.coe_ne_top ht.ediam_ne_top⟩)
(ediam_image2_le _ _ _ hf₁ hf₂)
#align lipschitz_on_with.bounded_image2 LipschitzOnWith.isBounded_image2

end Metric

end LipschitzOnWith
Expand Down

0 comments on commit 83e44eb

Please sign in to comment.