Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat: Extending convex functions #6339

Closed
wants to merge 18 commits into from
Closed
Show file tree
Hide file tree
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 14 additions & 1 deletion Mathlib/Algebra/Order/Module.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
-/
import Mathlib.Algebra.Order.SMul

#align_import algebra.order.module from "leanprover-community/mathlib"@"9003f28797c0664a49e4179487267c494477d853"
#align_import algebra.order.module from "leanprover-community/mathlib"@"3ba15165bd6927679be7c22d6091a87337e3cd0c"

Check notice on line 8 in Mathlib/Algebra/Order/Module.lean

View workflow job for this annotation

GitHub Actions / Add annotations

Synchronization

See review instructions and diff at https://leanprover-community.github.io/mathlib-port-status/file/algebra/order/module?range=9003f28797c0664a49e4179487267c494477d853..3ba15165bd6927679be7c22d6091a87337e3cd0c

/-!
# Ordered module
Expand Down Expand Up @@ -217,6 +217,19 @@

end OrderedRing

section LinearOrderedRing
variable [LinearOrderedRing k] [LinearOrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {a : k}

theorem smul_max_of_nonpos (ha : a ≤ 0) (b₁ b₂ : M) : a • max b₁ b₂ = min (a • b₁) (a • b₂) :=
(antitone_smul_left ha : Antitone (_ : M → M)).map_max
#align smul_max_of_nonpos smul_max_of_nonpos

theorem smul_min_of_nonpos (ha : a ≤ 0) (b₁ b₂ : M) : a • min b₁ b₂ = max (a • b₁) (a • b₂) :=
(antitone_smul_left ha : Antitone (_ : M → M)).map_min
#align smul_min_of_nonpos smul_min_of_nonpos

end LinearOrderedRing

section LinearOrderedField

variable [LinearOrderedField k] [OrderedAddCommGroup M] [Module k M] [OrderedSMul k M] {s : Set M}
Expand Down
23 changes: 22 additions & 1 deletion Mathlib/Algebra/Order/Monoid/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
import Mathlib.Order.MinMax
import Mathlib.Tactic.Contrapose

#align_import algebra.order.monoid.lemmas from "leanprover-community/mathlib"@"2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c"
#align_import algebra.order.monoid.lemmas from "leanprover-community/mathlib"@"3ba15165bd6927679be7c22d6091a87337e3cd0c"

Check notice on line 12 in Mathlib/Algebra/Order/Monoid/Lemmas.lean

View workflow job for this annotation

GitHub Actions / Add annotations

Synchronization

See review instructions and diff at https://leanprover-community.github.io/mathlib-port-status/file/algebra/order/monoid/lemmas?range=2ed7e4aec72395b6a7c3ac4ac7873a7a43ead17c..3ba15165bd6927679be7c22d6091a87337e3cd0c

/-!
# Ordered monoids
Expand Down Expand Up @@ -315,6 +315,27 @@
#align min_le_max_of_add_le_add min_le_max_of_add_le_add
#align min_le_max_of_mul_le_mul min_le_max_of_mul_le_mul

end LinearOrder

section LinearOrder
variable [LinearOrder α] [CovariantClass α α HMul.hMul LE.le]
[CovariantClass α α (swap HMul.hMul) LE.le] {a b c d : α}
YaelDillies marked this conversation as resolved.
Show resolved Hide resolved

@[to_additive max_add_add_le_max_add_max]
theorem max_mul_mul_le_max_mul_max' : max (a * b) (c * d) ≤ max a c * max b d :=
max_le (mul_le_mul' (le_max_left _ _) <| le_max_left _ _) <|
mul_le_mul' (le_max_right _ _) <| le_max_right _ _
#align max_mul_mul_le_max_mul_max' max_mul_mul_le_max_mul_max'
#align max_add_add_le_max_add_max max_add_add_le_max_add_max

--TODO: Also missing `min_mul_min_le_min_mul_mul`
@[to_additive min_add_min_le_min_add_add]
theorem min_mul_min_le_min_mul_mul' : min a c * min b d ≤ min (a * b) (c * d) :=
le_min (mul_le_mul' (min_le_left _ _) <| min_le_left _ _) <|
mul_le_mul' (min_le_right _ _) <| min_le_right _ _
#align min_mul_min_le_min_mul_mul' min_mul_min_le_min_mul_mul'
#align min_add_min_le_min_add_add min_add_min_le_min_add_add

end LinearOrder
end Mul

Expand Down
19 changes: 16 additions & 3 deletions Mathlib/Algebra/Order/SMul.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
import Mathlib.Tactic.GCongr.Core
import Mathlib.Tactic.Positivity

#align_import algebra.order.smul from "leanprover-community/mathlib"@"9003f28797c0664a49e4179487267c494477d853"
#align_import algebra.order.smul from "leanprover-community/mathlib"@"3ba15165bd6927679be7c22d6091a87337e3cd0c"

Check notice on line 14 in Mathlib/Algebra/Order/SMul.lean

View workflow job for this annotation

GitHub Actions / Add annotations

Synchronization

See review instructions and diff at https://leanprover-community.github.io/mathlib-port-status/file/algebra/order/smul?range=9003f28797c0664a49e4179487267c494477d853..3ba15165bd6927679be7c22d6091a87337e3cd0c

/-!
# Ordered scalar product
Expand Down Expand Up @@ -186,12 +186,25 @@
· cases (Int.negSucc_not_pos _).1 hn
#align int.ordered_smul Int.orderedSMul

section LinearOrderedSemiring
variable [LinearOrderedSemiring R] [LinearOrderedAddCommMonoid M] [SMulWithZero R M]
[OrderedSMul R M] {a : R}

-- TODO: `LinearOrderedField M → OrderedSMul ℚ M`
instance LinearOrderedSemiring.toOrderedSMul {R : Type*} [LinearOrderedSemiring R] :
OrderedSMul R R :=
instance LinearOrderedSemiring.toOrderedSMul : OrderedSMul R R :=
OrderedSMul.mk'' fun _ => strictMono_mul_left_of_pos
#align linear_ordered_semiring.to_ordered_smul LinearOrderedSemiring.toOrderedSMul

theorem smul_max (ha : 0 ≤ a) (b₁ b₂ : M) : a • max b₁ b₂ = max (a • b₁) (a • b₂) :=
(monotone_smul_left ha : Monotone (_ : M → M)).map_max
#align smul_max smul_max

theorem smul_min (ha : 0 ≤ a) (b₁ b₂ : M) : a • min b₁ b₂ = min (a • b₁) (a • b₂) :=
(monotone_smul_left ha : Monotone (_ : M → M)).map_min
#align smul_min smul_min

end LinearOrderedSemiring

section LinearOrderedSemifield

variable [LinearOrderedSemifield 𝕜] [OrderedAddCommMonoid M] [OrderedAddCommMonoid N]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Set/Intervals/Basic.lean
eric-wieser marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
import Mathlib.Order.MinMax
import Mathlib.Data.Set.Prod

#align_import data.set.intervals.basic from "leanprover-community/mathlib"@"4367b192b58a665b6f18773f73eb492eb4df7990"
#align_import data.set.intervals.basic from "leanprover-community/mathlib"@"3ba15165bd6927679be7c22d6091a87337e3cd0c"

Check notice on line 9 in Mathlib/Data/Set/Intervals/Basic.lean

View workflow job for this annotation

GitHub Actions / Add annotations

Synchronization

See review instructions and diff at https://leanprover-community.github.io/mathlib-port-status/file/data/set/intervals/basic?range=4367b192b58a665b6f18773f73eb492eb4df7990..3ba15165bd6927679be7c22d6091a87337e3cd0c

/-!
# Intervals
Expand Down
1 change: 1 addition & 0 deletions Mathlib/Data/Set/Intervals/Image.lean
YaelDillies marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@ variable [Preorder α] [Preorder β]
theorem Monotone.image_Icc_subset (h : Monotone f) :
f '' Icc a b ⊆ Icc (f a) (f b) :=
h.mapsTo_Icc.image_subset
#align monotone.image_Icc_subset Monotone.image_Icc_subset
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Where are the other three lemmas, MonotoneOn.image_Icc_subset, AntitoneOn.image_Icc_subset, and Antitone.image_Icc_subset? I'm a bit confused, because your previous version had maybe 20 new lemmas, but this one is now missing 3 lemmas.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Two approaches come to mind:

  • Add #noaligns for the other three lemmas with a TODO comment
  • Make a separate PR that adds this whole family of lemmas (first), then update this one to just add the aligns.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Went for the second because it's less work for me: #7146.


theorem StrictMono.image_Ioo_subset (h : StrictMono f) :
f '' Ioo a b ⊆ Ioo (f a) (f b) :=
Expand Down
55 changes: 54 additions & 1 deletion Mathlib/Order/Lattice.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
import Mathlib.Order.ULift
import Mathlib.Tactic.GCongr.Core

#align_import order.lattice from "leanprover-community/mathlib"@"e4bc74cbaf429d706cb9140902f7ca6c431e75a4"
#align_import order.lattice from "leanprover-community/mathlib"@"3ba15165bd6927679be7c22d6091a87337e3cd0c"

Check notice on line 12 in Mathlib/Order/Lattice.lean

View workflow job for this annotation

GitHub Actions / Add annotations

Synchronization

See review instructions and diff at https://leanprover-community.github.io/mathlib-port-status/file/order/lattice?range=e4bc74cbaf429d706cb9140902f7ca6c431e75a4..3ba15165bd6927679be7c22d6091a87337e3cd0c

/-!
# (Semi-)lattices
Expand Down Expand Up @@ -1135,6 +1135,7 @@
end Monotone

namespace MonotoneOn
variable {f : α → β} {s : Set α} {x y : α}

/-- Pointwise supremum of two monotone functions is a monotone function. -/
protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
Expand All @@ -1160,6 +1161,32 @@
hf.inf hg
#align monotone_on.min MonotoneOn.min

theorem of_map_inf [SemilatticeInf α] [SemilatticeInf β]
(h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊓ y) = f x ⊓ f y) : MonotoneOn f s := fun x hx y hy hxy =>
inf_eq_left.1 <| by rw [← h _ hx _ hy, inf_eq_left.2 hxy]
#align monotone_on.of_map_inf MonotoneOn.of_map_inf

theorem of_map_sup [SemilatticeSup α] [SemilatticeSup β]
(h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊔ y) = f x ⊔ f y) : MonotoneOn f s :=
(@of_map_inf αᵒᵈ βᵒᵈ _ _ _ _ h).dual
#align monotone_on.of_map_sup MonotoneOn.of_map_sup

variable [LinearOrder α]

theorem map_sup [SemilatticeSup β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
f (x ⊔ y) = f x ⊔ f y := by
cases le_total x y <;> have := hf ?_ ?_ ‹_› <;>
first
| assumption
| simp only [*, sup_of_le_left, sup_of_le_right]

#align monotone_on.map_sup MonotoneOn.map_sup

theorem map_inf [SemilatticeInf β] (hf : MonotoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
f (x ⊓ y) = f x ⊓ f y :=
hf.dual.map_sup hx hy
#align monotone_on.map_inf MonotoneOn.map_inf

end MonotoneOn

namespace Antitone
Expand Down Expand Up @@ -1215,6 +1242,7 @@
end Antitone

namespace AntitoneOn
variable {f : α → β} {s : Set α} {x y : α}

/-- Pointwise supremum of two antitone functions is an antitone function. -/
protected theorem sup [Preorder α] [SemilatticeSup β] {f g : α → β} {s : Set α}
Expand All @@ -1240,6 +1268,31 @@
hf.inf hg
#align antitone_on.min AntitoneOn.min

theorem of_map_inf [SemilatticeInf α] [SemilatticeSup β]
(h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊓ y) = f x ⊔ f y) : AntitoneOn f s := fun x hx y hy hxy =>
sup_eq_left.1 <| by rw [← h _ hx _ hy, inf_eq_left.2 hxy]
#align antitone_on.of_map_inf AntitoneOn.of_map_inf

theorem of_map_sup [SemilatticeSup α] [SemilatticeInf β]
(h : ∀ x ∈ s, ∀ y ∈ s, f (x ⊔ y) = f x ⊓ f y) : AntitoneOn f s :=
(@of_map_inf αᵒᵈ βᵒᵈ _ _ _ _ h).dual
#align antitone_on.of_map_sup AntitoneOn.of_map_sup

variable [LinearOrder α]

theorem map_sup [SemilatticeInf β] (hf : AntitoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
f (x ⊔ y) = f x ⊓ f y := by
cases le_total x y <;> have := hf ?_ ?_ ‹_› <;>
first
| assumption
| simp only [*, sup_of_le_left, sup_of_le_right, inf_of_le_left, inf_of_le_right]
#align antitone_on.map_sup AntitoneOn.map_sup

theorem map_inf [SemilatticeSup β] (hf : AntitoneOn f s) (hx : x ∈ s) (hy : y ∈ s) :
f (x ⊓ y) = f x ⊔ f y :=
hf.dual.map_sup hx hy
#align antitone_on.map_inf AntitoneOn.map_inf

end AntitoneOn

/-!
Expand Down
Loading