Skip to content
/ golem Public

A simple tensor library for the computational graph on CPU

Notifications You must be signed in to change notification settings

lempiji/golem

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

golem

D

A library that provides tensors and computational graphs for machine learning.

Concept

  1. Lower the hurdle and learning curve to getting started.
  2. Use language features to make model definition simple and safe.
  3. Unify the code and language for training and production environments.

Features

  • A statically size checked tensor
    • with shape-safe operators
  • Statically omit grads from tensor
    • UseGradient.no or No.gradient
  • Some friendly error messages
  • Simple SGD , Adam or AdaBelief optimizer

Usage

command

dub init
dub add golem

dub.json

{
    "dependencies": {
        "golem": "~>0.8.0"
    }
}

dub.sdl

dependency "golem" version="~>0.8.0"

Requirements

Link with BLAS Library

See the mir-lapack Wiki

Link: https://github.com/libmir/mir-lapack/wiki/Link-with-CBLAS-&-LAPACK

For Windows

Use Intel MKL by default

Download : https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

For Ubuntu

Use OpenBLAS by default

$ sudo apt install libopenblas-dev

Examples

import golem;

// statically sized tensor
auto x = tensor!([2, 2])([
        [0.1, 0.2],
        [0.3, 0.4],
    ]);
auto y = tensor!([2, 2])([
        [-0.1, 0.2],
        [0.3, -0.4],
    ]);

auto z = x + y;

assert(z.value[0, 0] == 0.0);
import golem;
import golem.random : randn;
import std.typecons : No;

// no grads tensor
Tensor!(float, [3, 3], UseGradient.no) x = randn!(float, [3, 3], No.gradient);

Tensor Shape

import golem;

// 3 x 2
auto x = tensor!([3, 2])([
    [1.0, 2.0],
    [3.0, 4.0],
    [5.0, 6.0],
]);
// N x 2
auto y = tensor!([0, 2])([
    [1.0, 2.0],
    [3.0, 4.0],
]);

assert(x.shape == [3, 2]);
assert(y.shape == [2, 2]);

static assert(x.staticShape == [3, 2]);
static assert(y.staticShape == [0, 2]);

assert(x.runtimeShape == [3, 2]);
assert(y.runtimeShape == [2, 2]);

const batchSize = x.shape[0];
import golem;

auto x = tensor!([3, 2])([
        [1.0, 2.0],
        [3.0, 4.0],
        [5.0, 6.0],
    ]);
auto y = tensor!([2, 2])([
        [1.0, 2.0],
        [3.0, 4.0],
    ]);
auto z = tensor!([0, 2])([
        [1.0, 2.0],
        [3.0, 4.0],
    ]);

// can not compile
static assert(!__traits(compiles, {
        auto a = x + y;
    }));

// runtime error
import core.exception : AssertError;
import std.exception : assertThrown;

assertThrown!AssertError(x + z);
import golem;

// more dimentions
// like PyTorch (batch, channel, width, height)
Tensor!(float, [0, 3, 224, 224]) images;

// (batch, width, height)
Tensor!(float, [0, 28, 28], UseGradient.no) mnistImages;

Broadcast Operation

import golem;
import golem.random;

Tensor!(float, [0, 28, 28]) images = randn!(float, [0, 28, 28])(1);
Tensor!(float, [28, 28]) offset = randn!(float, [28, 28]);

// shape rule for broadcast
assert(images.shape.length > offset.shape.length);
assert(images.shape[$ - offset.shape.length .. $] == offset.shape);

// broadcast
auto result1 = broadcastOp!"+"(images, offset);
auto result2 = broadcastOp!"-"(images, offset);
auto result3 = broadcastOp!"*"(images, offset);

// implement broadcast!"/"
auto result4 = broadcastOp!"*"(images, onesLike(offset) / offset);

Linear

import golem;

// prepare datasets with dynamic batch sizes
auto data = tensor!([0, 2])([
        [0.1, 0.2],
        [0.1, 0.3],
        [0.15, 0.4],
        [0.2, 0.5],
    ]);
auto label = tensor!([0, 1])([
        [0.4],
        [0.5],
        [0.6],
        [0.7],
    ]);

// init
auto linear = new Linear!(double, 2, 1);
auto optimizer = createOptimizer!SGD(linear);

// train
foreach (epoch; 0 .. 10_000)
{
    auto y = linear(data);
    auto diff = label - y;
    auto loss = mean(diff * diff);

    optimizer.resetGrads();
    loss.backward();
    optimizer.trainStep();
}

// result
import std.stdio;

auto y = linear(data);
writeln(y.value);

Optimizer

import golem.nn : Linear;
import golem.optimizer;

auto fc1 = new Linear!(float, 28 * 28, 100);
auto fc2 = new Linear!(float, 100, 10);

// create instance with parameters
auto sgd = createOptimizer!SGD(fc1, fc2);
auto adam = createOptimizer!Adam(fc1, fc2);

// reset grads
sgd.resetGrads();
adam.resetGrads();

// train step
sgd.trainStep();
adam.trainStep();
// configure Parameters
import golem;

auto fc1 = new Linear!(float, 2, 2);
auto fc2 = new Linear!(float, 2, 1);

// SGD
auto sgd = createOptimizer!SGD(fc1, fc2);
sgd.config.learningRate = 0.1;  // default 0.01
sgd.config.momentumRate = 0.95; // default 0.9
sgd.config.weightDecay = 1e-3; // default 0

// Adam
auto adam = createOptimizer!Adam(fc1, fc2);
adam.config.learningRate = 0.1; // default 0.001
adam.config.beta1 = 0.95;       // default 0.9
adam.config.beta2 = 0.99;       // default 0.999
adam.config.eps = 1e-6;         // default 1e-8
adam.config.weightDecay = 1e-3; // default 0

// AdaBelief
// https://arxiv.org/abs/2010.07468
auto adabelief = createOptimizer!AdaBelief(fc1, fc2);
adabelief.config.learningRate = 0.1; // default 0.001
adabelief.config.beta1 = 0.95;       // default 0.9
adabelief.config.beta2 = 0.99;       // default 0.999
adabelief.config.eps = 1e-6;         // default 1e-8
adabelief.config.weightDecay = 1e-3; // default 0

Custom Model

Perceptron

  • Dim : Input -> Hidden -> Output
  • Activation : sigmoid
import golem;
import std.meta : AliasSeq;

class Perceptron(size_t Input, size_t Hidden, size_t Output)
{
    // layers
    Linear!(float, Input, Hidden) fc1;
    Linear!(float, Hidden, Output) fc2;

    // implements as a simple network module
    mixin NetModule;

    // is equals to
    /+
    alias parameters = AliasSeq!(fc1, fc2);

    this()
    {
        // init layers
        foreach (ref p; parameters)
            p = new typeof(p);
    }
    +/

    auto forward(T)(T x)
    {
        auto h = sigmoid(fc1(x));
        auto o = sigmoid(fc2(h));
        return o;
    }
}

AutoEncoder

  • Dim : 10 -> 8 -> |3| -> 8 -> 10
class AutoEncoder
{
    // Nested custom model
    Perceptron!(10, 8, 3) encoder;
    Perceptron!(3, 8, 10) decoder;

    mixin NetModule;

    auto forward(T)(T x)
    {
        auto encoded = encode(x);
        auto decoded = decode(encoded);
        return decoded;
    }

    auto encode(T)(T x)
    {
        return encoder.forward(x);
    }

    auto decode(T)(T x)
    {
        return decoder.forward(x);
    }
}

Use Sequence

import golem;

alias Perceptron(size_t Input, size_t Hidden, size_t Output) = Sequence!(
        Linear!(float, Input, Hidden),
        Activation!sigmoid,
        Linear!(float, Hidden, Output),
        Activation!sigmoid,
    );

auto net = new Perceptron!(2, 2, 1);
auto x = tensor!([0, 2])([1.0f, 2.0f]);
auto y = net(x);

K-Fold

import std.parallelism : parallel;
import golem.data.common;

auto source = [1.0, 2.0, 3.0, 4.0, 5.0];
auto datasets = source.kfold!5();

foreach (dataset; parallel(datasets[]))
{
    auto train = dataset[0];
    auto test = dataset[1];

    // train
}

Save & Load

auto model = new Perceptron!(2, 2, 1);
auto archiver = new ModelArchiver("model_data");
archiver.load(model); // recent saved parameters

foreach (epoch; 0 .. 10)
{
    // train

    archiver.save(model); // save each epoch
}

filename format

./model_data
    model_yyyyMMdd-hhmmss.dat

Modules

Dependency Graph

dependency graph