Skip to content

Pytorch implementation of Quality of syntactic implication of RL-based sentence summarization

Notifications You must be signed in to change notification settings

lethienhoa/Eval-RL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

Quality of syntactic implication of RL-based sentence summarization

Work on summarization has explored both reinforcement learning (RL) optimization using ROUGE as a reward and syntax-aware models, such as models those input is enriched with part-of-speech (POS)-tags and dependency information. However, it is not clear what is the respective impact of these approaches beyond the standard ROUGE evaluation metric. Especially, RL-based for summarization is becoming more and more popular. In this paper, we provide a detailed comparison of these two approaches and of their combination along several dimensions that relate to the perceived quality of the generated summaries: number of repeated words, distribution of part-of-speech tags, impact of sentence length, relevance and grammaticality. Using the standard Gigaword sentence summarization task, we compare an RL self-critical sequence training (SCST) method with syntax-aware models that leverage POS tags and Dependency information. We show that on all qualitative evaluations, the combined model gives the best results, but also that only training with RL and without any syntactic information already gives nearly as good results as syntax-aware models with less parameters and faster training convergence.

Paper:

Hoa T. Le, Christophe Cerisara, Claire Gardent. Quality of syntactic implication of RL-based sentence summarization. Association for the Advancement of Artificial Intelligence 2020 (AAAI-20) Workshop on Engineering Dependable and Secure Machine Learning Systems (EDSMLS 2020). (https://arxiv.org/abs/1912.05493)

@article{HoaLe:2019,
       author = {{Le}, Hoa T. and {Cerisara}, Christophe and {Gardent}, Claire},
        title = "{Quality of syntactic implication of RL-based sentence summarization}",
      journal = {arXiv e-prints},
     keywords = {Computer Science - Computation and Language},
         year = "2019",
        month = "Dec",
          eid = {arXiv:1912.05493},
        pages = {arXiv:1912.05493},
archivePrefix = {arXiv},
       eprint = {1912.05493},
 primaryClass = {cs.CL},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2019arXiv191205493L},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Reference Source Codes: https://github.com/ChenRocks/fast_abs_rl

About

Pytorch implementation of Quality of syntactic implication of RL-based sentence summarization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published