Skip to content

Code for analysis of single-cell RNA-seq data of Bagnoli et al., 2017

License

Notifications You must be signed in to change notification settings

lewange/Bagnoli_2017

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bagnoli_2017

This repository contains the code for analysis of single-cell RNA-seq data of Bagnoli et al., 2017.

mcSCRB-seq: sensitive and powerful single-cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) has emerged as the central genome-wide method to characterize cellular identities and processes. While performance of scRNA-seq methods is improving, an optimum in terms of sensitivity, cost-efficiency and flexibility has not yet been reached. Among the flexible plate-based methods "Single-Cell RNA-Barcoding and Sequencing" (SCRB-seq) is one of the most sensitive and efficient ones. Based on this protocol, we systematically evaluated experimental conditions such as reverse transcriptases, reaction enhancers and PCR polymerases. We find that adding polyethylene glycol considerably increases sensitivity by enhancing cDNA synthesis. Furthermore, using Terra polymerase increases efficiency due to a more even cDNA amplification that requires less sequencing of libraries. We combined these and other improvements to a new scRNA-seq library protocol we call "molecular crowding SCRB-seq" (mcSCRB-seq), which we show to be the most sensitive and one of the most efficient and flexible scRNA-seq methods to date.

Preprocessing

All scRNA-seq data was preprocessed with zUMIs (Parekh et al., 2017).

The command was run as follows:

bash zUMIs-master.sh -f JM8.read1.fastq.gz -r JM8.read2.fastq.gz -n JM8 -g /data/ngs/genomes/Mouse/mm10/STAR5idx_ERCC_noGTF/ -a /data/ngs/genomes/Mouse/mm10/Mus_musculus.GRCm38.75.clean.spike.gtf -c 1-14 -m 15-24 -l 50 -z 2 -u 3 -p 16 -R yes -d 10000,20000,30000,40000,50000,60000,70000,80000,90000,100000,200000,300000,400000,500000,600000,700000,800000,900000,1000000,2000000,3000000,4000000,5000000

This resulted in the JM8.rds object found in this repository.

Session Info

> sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] de_DE.UTF-8/de_DE.UTF-8/de_DE.UTF-8/C/de_DE.UTF-8/de_DE.UTF-8

attached base packages:
 [1] stats4    grid      parallel  splines   stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] hexbin_1.27.1       biomaRt_2.32.0      RColorBrewer_1.1-2  scales_0.5.0        scran_1.4.4        
 [6] BiocParallel_1.10.1 scater_1.4.0        Biobase_2.36.2      BiocGenerics_0.22.0 edgeR_3.18.1       
[11] limma_3.32.2        matrixStats_0.52.2  ineq_0.2-13         Hmisc_4.0-3         Formula_1.2-1      
[16] survival_2.41-3     lattice_0.20-35     bbmle_1.0.19        powsimRDev_0.0.905  doMC_1.3.4         
[21] iterators_1.0.8     foreach_1.4.3       gamlss.dist_5.0-2   bindrcpp_0.2        MASS_7.3-47        
[26] cowplot_0.8.0       dplyr_0.7.2         ggplot2_2.2.1      

loaded via a namespace (and not attached):
  [1] SparseM_1.77               rtracklayer_1.36.3         ggthemes_3.4.0             R.methodsS3_1.7.1         
  [5] lavaan_0.5-23.1097         coda_0.19-1                nonnest2_0.4-1             tidyr_0.7.0               
  [9] acepack_1.4.1              bit64_0.9-7                knitr_1.16                 irlba_2.2.1               
 [13] aroma.light_3.6.0          DelayedArray_0.2.7         R.utils_2.5.0              Rook_1.1-1                
 [17] data.table_1.10.5          rpart_4.1-11               hwriter_1.3.2              RCurl_1.95-4.8            
 [21] doParallel_1.0.10          snow_0.4-2                 GenomicFeatures_1.28.2     RSQLite_2.0               
 [25] VGAM_1.0-4                 combinat_0.0-8             bit_1.1-12                 httpuv_1.3.5              
 [29] ggsci_2.7                  SummarizedExperiment_1.6.3 DrImpute_1.0               assertthat_0.2.0          
 [33] viridis_0.4.0              tximport_1.4.0             RMTstat_0.3                IHW_1.4.0                 
 [37] caTools_1.17.1             igraph_1.0.1               DBI_0.7                    geneplotter_1.54.0        
 [41] htmlwidgets_0.8            EDASeq_2.10.0              RcppArmadillo_0.7.960.1.2  purrr_0.2.3               
 [45] backports_1.1.0            DDRTree_0.1.5              pbivnorm_0.6.0             permute_0.9-4             
 [49] scDD_1.0.0                 annotate_1.54.0            moments_0.14               RcppParallel_4.3.20       
 [53] blockmodeling_0.1.8        Cairo_1.5-9                quantreg_5.33              abind_1.4-5               
 [57] withr_1.0.2                RcppEigen_0.3.3.3.0        checkmate_1.8.2            GenomicAlignments_1.12.1  
 [61] fdrtool_1.2.15             mclust_5.3                 SCnorm_0.99.7              mnormt_1.5-5              
 [65] cluster_2.0.6              DEDS_1.50.0                NBPSeq_0.3.0               lazyeval_0.2.0            
 [69] crayon_1.3.2               genefilter_1.58.1          glmnet_2.0-10              pkgconfig_2.0.1           
 [73] slam_0.1-40                labeling_0.3               GenomeInfoDb_1.12.1        nlme_3.1-131              
 [77] vipor_0.4.5                devtools_1.13.2            nnet_7.3-12                bindr_0.1                 
 [81] rlang_0.1.2                miniUI_0.1.1               MatrixModels_0.4-1         sandwich_2.3-4            
 [85] extRemes_2.0-8             BPSC_0.99.1                cidr_0.1.5                 distillery_1.0-2          
 [89] Matrix_1.2-9               BASiCS_0.7.30              lpsymphony_1.4.1           zoo_1.8-0                 
 [93] base64enc_0.1-3            beeswarm_0.2.3             pheatmap_1.0.8             viridisLite_0.2.0         
 [97] rjson_0.2.15               bitops_1.0-6               shinydashboard_0.6.0       NOISeq_2.20.0             
[101] R.oo_1.21.0                Lmoments_1.2-3             spam_1.4-0                 KernSmooth_2.23-15        
[105] ggExtra_0.7                Biostrings_2.44.1          EBSeq_1.16.0               blob_1.1.0                
[109] rgl_0.98.1                 stringr_1.2.0              qvalue_2.8.0               msir_1.3.1                
[113] brew_1.0-6                 arm_1.9-3                  ShortRead_1.34.0           NbClust_3.0               
[117] S4Vectors_0.14.3           memoise_1.1.0              magrittr_1.5               plyr_1.8.4                
[121] gplots_3.0.1               gdata_2.18.0               zlibbioc_1.22.0            compiler_3.4.0            
[125] HSMMSingleCell_0.110.0     pcaMethods_1.68.0          lme4_1.1-13                DESeq2_1.16.1             
[129] fitdistrplus_1.0-9         Rsamtools_1.28.0           ade4_1.7-8                 DSS_2.16.0                
[133] XVector_0.16.0             htmlTable_1.9              mgcv_1.8-17                ROTS_1.4.0                
[137] MAST_1.2.1                 stringi_1.1.5              densityClust_0.2.1         locfit_1.5-9.1            
[141] latticeExtra_0.6-28        tools_3.4.0                monocle_2.4.0              foreign_0.8-67            
[145] outliers_0.14              bsseq_1.12.1               gridExtra_2.2.1            Rtsne_0.13                
[149] digest_0.6.12              FNN_1.1                    shiny_1.0.5                qlcMatrix_0.9.5           
[153] quadprog_1.5-5             Rcpp_0.12.12               car_2.1-4                  GenomicRanges_1.28.3      
[157] pscl_1.4.9                 AnnotationDbi_1.38.2       minpack.lm_1.2-1           colorspace_1.3-2          
[161] XML_3.98-1.7               fields_9.0                 IRanges_2.10.2             statmod_1.4.29            
[165] flexmix_2.3-14             xtable_1.8-2               nloptr_1.0.4               jsonlite_1.5              
[169] baySeq_2.10.0              dynamicTreeCut_1.63-1      modeltools_0.2-21          testthat_1.0.2            
[173] R6_2.2.2                   clusterCrit_1.2.7          htmltools_0.3.6            mime_0.5                  
[177] minqa_1.2.4                glue_1.1.1                 DT_0.2                     DESeq_1.28.0              
[181] RUVSeq_1.10.0              codetools_0.2-15           maps_3.1.1                 mvtnorm_1.0-6             
[185] tibble_1.3.4               pbkrtest_0.4-7             numDeriv_2016.8-1          ggbeeswarm_0.5.3          
[189] scde_1.99.4                gtools_3.5.0               openxlsx_4.0.17            CompQuadForm_1.4.3        
[193] cobs_1.3-3                 fastICA_1.2-0              munsell_0.4.3              rhdf5_2.20.0              
[197] GenomeInfoDbData_0.99.0    reshape2_1.4.2             gtable_0.2.0               NBGOF_0.2.2    

About

Code for analysis of single-cell RNA-seq data of Bagnoli et al., 2017

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published