Skip to content
/ cem Public

cem is a lightweight library for performing coarsened exact matching (CEM). CEM is a modern matching technique useful for causal inference on observational data.

License

Notifications You must be signed in to change notification settings

lewisbails/cem

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

81 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cem: Coarsened Exact Matching for Causal Inference

pypi pytest style

cem is a lightweight library for Coarsened Exact Matching (CEM). CEM is a matching technique used to reduce covariate imbalance, which would otherwise lead to treatment effect estimates that are sensitive to model specification. By removing and/or reweighting certain observations via CEM, one can arrive at treatment effect estimates that are more stable than those found using other matching techniques like propensity score matching. The L1 and L2 multivariate imbalance measures are implemented as described in [2].

Usage

Load the data

from cem.match import match
from cem.coarsen import coarsen
from cem.imbalance import L1

import statsmodels.api as sm

boston = load_boston()

O = "MEDV"  # outcome variable
T = "CHAS"  # treatment variable

y = boston[O]
X = boston.drop(columns=O)
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
0 0.00632 18 2.31 0 0.538 6.575 65.2 4.09 1 296 15.3 396.9 4.98 24
1 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.9 9.14 21.6
2 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
3 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
4 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.9 5.33 36.2

Baseline Coarsening

First we coarsen the data in an automatic fashion and calculate a baseline imbalance we wish to improve upon. Be sure to drop the column containing your outcome variable prior to coarsening/matching. coarsen optionally takes a list of columns you'd like to auto-coarsen, ignoring the rest.

# coarsen predictor variables
X_coarse = coarsen(X, T, "l1")

# match observations
weights = match(X_coarse, T)

# calculate weighted imbalance, this is our baseline
L1(X_coarse, T, weights)

Informed Coarsening

It's recommended to coarsen using pandas.cut and pandas.qcut, but you are free to coarsen your predictor variables however you wish.

# coarsen predictor variables
schema = {
   'CRIM': (pd.cut, {'bins': 4}),
   'ZN': (pd.qcut, {'q': 4}),
   'INDUS': (pd.qcut, {'q': 4}),
   'NOX': (pd.cut, {'bins': 5}),
   'RM': (pd.cut, {'bins': 5}),
   'AGE': (pd.cut, {'bins': 5}),
   'DIS': (pd.cut, {'bins': 5}),
   'RAD': (pd.cut, {'bins': 6}),
   'TAX': (pd.cut, {'bins': 5}),
   'PTRATIO': (pd.cut, {'bins': 6}),
   'B': (pd.cut, {'bins': 5}),
   'LSTAT': (pd.cut, {'bins': 5})
}

X_coarse_2 = X.apply(lambda x: schema[x.name][0](x, **schema[x.name][1]) if x.name in schema else x)

# match observations
weights = match(X_coarse_2, T)

# calculate weighted imbalance
L1(X_coarse_2, T, weights)

# we can also calculate the weighted imbalance using the independently coarsened data
L1(X_coarse, T, weights)

# perform weighted regression
model = sm.WLS(y, sm.add_constant(X), weights=weights)

References

[1] Porro, Giuseppe & King, Gary & Iacus, Stefano. (2009). CEM: Software for Coarsened Exact Matching. Journal of Statistical Software. 30. 10.18637/jss.v030.i09.

[2] Iacus, S. M., King, G., and Porro, G. Multivariate matching methods that are monotonic imbalance bounding. Journal of the American Statistical Association 106, 493 (2011 2011), 345–361.

[3] Iacus, S. M., King, G., and Porro, G. Causal inference without balance checking: Coarsened exact matching. Political Analysis 20, 1 (2012), 1–24.

[4] King, G., and Zeng, L. The dangers of extreme counterfactuals. Political Analysis 14 (2006), 131–159.

[5] Ho, D., Imai, K., King, G., and Stuart, E. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis 15 (2007), 199–236.

About

cem is a lightweight library for performing coarsened exact matching (CEM). CEM is a modern matching technique useful for causal inference on observational data.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages